![高中数学高考2021年高考数学(理)2月模拟评估卷(三)(全国1卷)(原卷版)第1页](http://m.enxinlong.com/img-preview/3/3/14026468/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学高考2021年高考数学(理)2月模拟评估卷(三)(全国1卷)(原卷版)第2页](http://m.enxinlong.com/img-preview/3/3/14026468/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学高考2021年高考数学(理)2月模拟评估卷(三)(全国1卷)(原卷版)第3页](http://m.enxinlong.com/img-preview/3/3/14026468/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学高考2021年高考数学(理)2月模拟评估卷(三)(全国1卷)(原卷版)
展开
这是一份高中数学高考2021年高考数学(理)2月模拟评估卷(三)(全国1卷)(原卷版),共6页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2021年高考数学(理)2月模拟评估卷(三)(全国1卷)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分满分150分.考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集,集合,集合,则( )A. B. C. D.2.是虚数单位,若,则的值是( )A. B. C.3 D.153.已知,,下列选项中,使成立的一个充分不必要条件是( )A.或 B.且C.,同号且不为 D.或4.某地气象局把当地某月(共30天)每一天的最低气温作了统计,并绘制了如下图所示的统计图.记这组数据的众数为M,中位数为N,平均数为P,则( )A. B. C. D.5.已知,,,则,,的大小关系是( )A. B. C. D.6.已知为等边三角形,,所在平面内的点满足,的最小值为( )A. B. C. D.7.运行如图所示的程序框图,输出的结果为,则判断框中可以填( )
A. B. C. D.8.为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由9位同学组成四个宣传小组,其中可回收物宣传小组有3位同学,餐厨垃圾、有害垃圾和其他垃圾宣传小组各有2位同学.现从这9位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为( )A. B. C. D.9.在中,由角,,所对的边分别为,,,且,则的最大值为( )A. B. C.1 D.10.如图,椭圆的右焦点为分别为椭圆的上、下顶点,是椭圆上一点,,记椭圆的离心率为,则( )A. B. C. D.11.已知,,若,则下列结论一定成立的是( )A. B.C. D.12.已知函数,,若,,则的最小值为( ).A. B. C. D.二.填空题:本大题共4小题,每小题5分13. 在平面直角坐标系中,以轴非负半轴为始边,角与角的终边关于轴对称,若,则的值为___________.14.已知,为偶函数,若曲线在点处的切线方程为,则__________.15.已知点P是双曲线上的动点,,分别为双曲线的左,右焦点,O为坐标原点.若点M是的角平分线上的一点,且,则__________.16.在棱长为的正方体中,棱,的中点分别为,,点在平面内,作平面,垂足为.当点在内(包含边界)运动时,点的轨迹所组成的图形的面积等于_____________.三、解答题:共70分,解答应写出文字说明,证明过程和解题步骤.第17-21题为必考题.第22、23题为选考题.(一)、必考题:共60分17.(12分) 已知数列的前n项和为,满足,.(1)求的通项公式;(2)设为数列的前n项和,求证:对任意,都有.18.(12分) 如图,在三棱锥中,平面ABC,三角形是正三角形,,点D、E、F分别为棱PA、PC、BC的中点,G为AD的中点.(1)求证:平面BDE;(2)求二面角的余弦值.19.(12分) 已知函数.(1)求的单调区间;(2)设,在(1)的条件下,求证:.20.(12分) 已知动点到直线的距离比到点的距离大.(1)求动点所在的曲线的方程;(2)已知点,是曲线上的两个动点,如果直线的斜率与直线的斜率互为相反数,证明直线的斜率为定值,并求出这个定值;(3)已知点,是曲线上的两个动点,如果直线的斜率与直线的斜率之和为,证明:直线过定点.21.(12分) 射击是使用某种特定型号的枪支对各种预先设置的目标进行射击,以命中精确度计算成绩的一项体育运动.射击运动不仅能锻炼身体,而且可以培养细致、沉着、坚毅等优良品质,有益于身心健康.为了度过愉快的假期,感受体育运动的美好,法外狂徒张三来到私人靶场体验射击运动.(1)已知用于射击打靶的某型号步枪的弹夹中一共有发子弹,假设张三每次打靶的命中率均为,靶场主规定:一旦出现子弹脱靶或者子弹打光耗尽的现象便立刻停止射击.记标靶上的子弹数量为随机变量,求的分布列和数学期望.(2)张三在休息之余用手机逛站刷到了著名电视剧《津门飞鹰》中的经典桥段:中国队长燕双鹰和三合会何五姑玩起了俄罗斯轮盘.这让张三不由得想起了半人半鬼,神枪第一的那句家喻户晓的神话“我赌你的枪里没有子弹”.由此,在接下来的射击体验中,张三利用自己的人脉关系想办法找人更换了一把型号为M1917,弹容为6发的左轮手枪,弹巢中有发实弹,其余均为空包弹.现规定:每次射击后,都需要在下一次射击之前填充一发空包弹.假设每次射击相互独立且均随机.在进行次射击后,记弹巢中空包弹的发数.(ⅰ)当时,探究数学期望和之间的关系;(ⅱ)若无论取何值,当射击次数达到一定程度后都可近似认为枪中没有实弹(以弹巢中实弹的发数的数学期望为决策依据,当弹巢中实弹的发数的数学期望时可近似认为枪中没有实弹),求该种情况下最小的射击次数.(参考数据:、)(二)、选考题:共10分. 请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程] (10分) 在平面直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴,建立坐标系,曲线极坐标方程为,且曲线与直线有且只有一个交点.(1)求;(2)过点且倾斜角为的直线交直线于点,交曲线异于原点的一点,,求的取值范围.23.[选修4-5:不等式选讲] (10分)设函数,.(1)若,解不等式;(2)如果任意,都存在,使得,求实数的取值范围.
相关试卷
这是一份高中数学高考2021年高考数学(理)12月模拟评估卷(三)(全国3卷)(原卷版) (1),共5页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份高中数学高考2021年高考数学(理)12月模拟评估卷(三)(全国2卷)(原卷版) (1),共6页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份高中数学高考2021年高考数学(理)12月模拟评估卷(三)(全国1卷)(原卷版) (1),共6页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。