搜索
    上传资料 赚现金
    英语朗读宝

    初中数学中考复习 专题23 与四边形有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版)

    初中数学中考复习 专题23 与四边形有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版)第1页
    初中数学中考复习 专题23 与四边形有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版)第2页
    初中数学中考复习 专题23 与四边形有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版)第3页
    还剩149页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题23 与四边形有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版)

    展开

    这是一份初中数学中考复习 专题23 与四边形有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版),共152页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
     专题23 与四边形有关的压轴题
    一、单选题
    1.(2022·湖北鄂州)如图,定直线MNPQ,点B、C分别为MN、PQ上的动点,且BC=12,BC在两直线间运动过程中始终有∠BCQ=60°.点A是MN上方一定点,点D是PQ下方一定点,且AEBCDF,AE=4,DF=8,AD=24,当线段BC在平移过程中,AB+CD的最小值为(       )


    A.24 B.24 C.12 D.12
    【答案】C
    【解析】
    【分析】
    如图所示,过点F作交BC于H,连接EH,可证明四边形CDFH是平行四边形,得到CH=DF=8,CD=FH,则BH=4,从而可证四边形ABHE是平行四边形,得到AB=HE,即可推出当E、F、H三点共线时,EH+HF有最小值EF即AB+CD有最小值EF,延长AE交PQ于G,过点E作ET⊥PQ于T,过点A作AL⊥PQ于L,过点D作DK⊥PQ于K,证明四边形BEGC是平行四边形,∠EGT=∠BCQ=60°,得到EG=BC=12,然后通过勾股定理和解直角三角形求出ET和TF的长即可得到答案.
    【详解】
    解:如图所示,过点F作交BC于H,连接EH,
    ∵,
    ∴四边形CDFH是平行四边形,
    ∴CH=DF=8,CD=FH,
    ∴BH=4,
    ∴BH=AE=4,   
    又∵,
    ∴四边形ABHE是平行四边形,
    ∴AB=HE,
    ∵,
    ∴当E、F、H三点共线时,EH+HF有最小值EF即AB+CD有最小值EF,
    延长AE交PQ于G,过点E作ET⊥PQ于T,过点A作AL⊥PQ于L,过点D作DK⊥PQ于K,
    ∵,
    ∴四边形BEGC是平行四边形,∠EGT=∠BCQ=60°,
    ∴EG=BC=12,
    ∴,
    同理可求得,,
    ∴,   
    ∵AL⊥PQ,DK⊥PQ,
    ∴,
    ∴△ALO∽△DKO,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    故选C.


    【点睛】
    本题主要考查了平行四边形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,正确作出辅助线推出当E、F、H三点共线时,EH+HF有最小值EF即AB+CD有最小值EF是解题的关键.
    2.(2022·广西贵港)如图,在边长为1的菱形中,,动点E在边上(与点A、B均不重合),点F在对角线上,与相交于点G,连接,若,则下列结论错误的是(       )

    A. B. C. D.的最小值为
    【答案】D
    【解析】
    【分析】
    先证明△BAF≌△DAF≌CBE,△ABC是等边三角形,得DF=CE,判断A项答案正确,由∠GCB+∠GBC=60゜,得∠BGC=120゜,判断B项答案正确,证△BEG△CEB得 ,即可判断C项答案正确,由,BC=1,得点G在以线段BC为弦的弧BC上,易得当点G在等边△ABC的内心处时,AG取最小值,由勾股定理求得AG=,即可判断D项错误.
    【详解】
    解:∵四边形ABCD是菱形,,
    ∴AB=AD=BC=CD,∠BAC=∠DAC=∠BAD==,
    ∴△BAF≌△DAF≌CBE,△ABC是等边三角形,
    ∴DF=CE,故A项答案正确,
    ∠ABF=∠BCE,
    ∵∠ABC=∠ABF+∠CBF=60゜,
    ∴∠GCB+∠GBC=60゜,
    ∴∠BGC=180゜-60゜=180゜-(∠GCB+∠GBC)=120゜,故B项答案正确,
    ∵∠ABF=∠BCE,∠BEG=∠CEB,
    ∴△BEG∽△CEB,
    ∴ ,
    ∴,
    ∵,
    ∴,故C项答案正确,
    ∵,BC=1,点G在以线段BC为弦的弧BC上,
    ∴当点G在等边△ABC的内心处时,AG取最小值,如下图,
       
    ∵△ABC是等边三角形,BC=1,
    ∴,AF=AC=,∠GAF=30゜,
    ∴AG=2GF,AG2=GF2+AF2,
    ∴ 解得AG=,故D项错误,
    故应选:D
    【点睛】
    本题主要考查了菱形的基本性质、等边三角形的判定及性质、圆周角定理,熟练掌握菱形的性质是解题的关键.
    3.(2022·辽宁营口)如图,在矩形中,点M在边上,把沿直线折叠,使点B落在边上的点E处,连接,过点B作,垂足为F,若,则线段的长为(       )

    A. B. C. D.
    【答案】A
    【解析】
    【分析】
    先证明△BFC≌△CDE,可得DE=CF=2,再用勾股定理求得CE=,从而可得AD=BC=,最后求得AE的长.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴BC=AD,∠ABC=∠D=90°,AD∥BC,
    ∴∠DEC=∠FCB,
    ∵,
    ∴∠BFC=∠CDE,
    ∵把沿直线折叠,使点B落在边上的点E处,
    ∴BC=EC,
    在△BFC与△CDE中,

    ∴△BFC≌△CDE(AAS),
    ∴DE=CF=2,
    ∴,
    ∴AD=BC=CE=,
    ∴AE=AD-DE=,
    故选:A.
    【点睛】
    本题考查了矩形的性质、全等三角形的判定和性质、折叠的性质,勾股定理的应用,解决本题的关键是熟练掌握矩形中的折叠问题.
    4.(2022·四川广安)如图,菱形ABCD的边长为2,点P是对角线AC上的一个动点,点E、F分别为边AD、DC的中点,则PE + PF的最小值是(  )


    A.2 B. C.1.5 D.
    【答案】A
    【解析】
    【分析】
    取AB中点G点,根据菱形的性质可知E点、G点关于对角线AC对称,即有PE=PG,则当G、P、F三点共线时,PE+PF=PG+PF最小,再证明四边形AGFD是平行四边形,即可求得FG=AD.
    【详解】
    解:取AB中点G点,连接PG,如图,


    ∵四边形ABCD是菱形,且边长为2,
    ∴AD=DC=AB=BC=2,
    ∵E点、G点分别为AD、AB的中点,
    ∴根据菱形的性质可知点E、点G关于对角线AC轴对称,
    ∴PE=PG,
    ∴PE+PF=PG+PF,
    即可知当G、P、F三点共线时,PE+PF=PG+PF最小,且为线段FG,
    如下图,G、P、F三点共线,连接FG,


    ∵F点是DC中点,G点为AB中点,
    ∴,
    ∵在菱形ABCD中,,
    ∴,
    ∴四边形AGFD是平行四边形,
    ∴FG=AD=2,
    故PE+PF的最小值为2,
    故选:A.
    【点睛】
    本题考查了菱形的性质、轴对称的性质、平行四边形的判定与性质等知识,找到E点关于AC的对称点是解答本题的关键.
    5.(2022·江苏泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2,d3,则d1+d2+d3的最小值为(     )


    A. B. C. D.
    【答案】C
    【解析】
    【分析】
    连接CF、CG、AE,证可得,当A、E、F、C四点共线时,即得最小值;
    【详解】
    解:如图,连接CF、CG、AE,




    在和中,




    当时,最小,

    ∴d1+d2+d3的最小值为,
    故选:C.
    【点睛】
    本题主要考查正方形的性质、三角形的全等证明,正确构造全等三角形是解本题的关键.
    6.(2022·山东泰安)如图,平行四边形的对角线,相交于点O.点E为的中点,连接并延长交于点F,,.下列结论:①;②;③四边形是菱形;④.其中正确结论的个数是(       )

    A.4 B.3 C.2 D.1
    【答案】A
    【解析】
    【分析】
    通过判定为等边三角形求得,利用等腰三角形的性质求得,从而判断①;利用有一组邻边相等的平行四边形是菱形判断③,然后结合菱形的性质和含直角三角形的性质判断②;根据三角形中线的性质判断④.
    【详解】
    解:点为的中点,

    又,


    是等边三角形,



    即,故①正确;
    在平行四边形中,,,,

    在和中,



    四边形是平行四边形,
    又,点为的中点,

    平行四边形是菱形,故③正确;

    在中,,
    ,故②正确;
    在平行四边形中,,
    又点为的中点,
    ,故④正确;
    综上所述:正确的结论有4个,
    故选:A.
    【点睛】
    本题考查平行四边形的性质,等边三角形的判定和性质,菱形的判定和性质,含的直角三角形的性质,掌握菱形的判定是解题关键.
    7.(2022·四川眉山)如图,四边形为正方形,将绕点逆时针旋转至,点,,在同一直线上,与交于点,延长与的延长线交于点,,.以下结论:
    ①;②;③;④.其中正确结论的个数为(       )

    A.1个 B.2个 C.3个 D.4个
    【答案】D
    【解析】
    【分析】
    利用旋转的性质,正方形的性质,可判断①正确;利用三角形相似的判定及性质可知②正确;证明,得到,即,利用是等腰直角三角形,求出,再证明即可求出可知③正确;过点E作交FD于点M,求出,再证明,即可知④正确.
    【详解】
    解:∵旋转得到,
    ∴,
    ∵为正方形,,,在同一直线上,
    ∴,
    ∴,故①正确;
    ∵旋转得到,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,故②正确;
    设正方形边长为a,
    ∵,,
    ∴,
    ∵,
    ∴,
    ∴,即,
    ∵是等腰直角三角形,
    ∴,
    ∵,,
    ∴,
    ∴,即,解得:,
    ∵,
    ∴,故③正确;
    过点E作交FD于点M,

    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∵,,
    ∴,
    ∴,故④正确
    综上所述:正确结论有4个,
    故选:D
    【点睛】
    本题考查正方形性质,旋转的性质,三角形相似的判定及性质,解直角三角形,解题的关键是熟练掌握以上知识点,结合图形求解.
    8.(2022·四川泸州)如图,在边长为3的正方形中,点是边上的点,且,过点作的垂线交正方形外角的平分线于点,交边于点,连接交边于点,则的长为(       )

    A. B. C. D.1
    【答案】B
    【解析】
    【分析】
    在AD上截取连接GE,延长BA至H,使连接EN,可得出,进而推出得出
    ,设则用勾股定理求出由可列方程解出x,即CN的长,由正切函数,求出BM的长,由即可得出结果.
    【详解】
    解:如图所示:在AD上截取连接GE,延长BA至H,使连接EN,











    为正方形外角的平分线,



    在和中,





    在和中,




    在和中,





    设则
    在中,






    故选:B.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定与性质,锐角三角函数,勾股定理等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.
    9.(2021·贵州黔西)如图,在正方形中,,分别是,的中点,,交于点,连接.下列结论:①;②;③.其中正确的结论是(       )

    A.①② B.①③ C.②③ D.①②③
    【答案】D
    【解析】
    【分析】
    根据正方形的性质得到 AB=BC=CD=AD, ∠B=∠BCD=90°,得到,,根据全等三角形的性质得到 ∠ECB=∠CDF,CE=DF,故①正确;求得∠CGD=90°,根据垂直的定义得到 CE⊥ DF,故②正确;延长CE交DA的延长线 于H,根据线段中点的定义得到AE=BE,根 据全等三角形的性质得到BC=AH=AD,由AG是斜边的中线,得到, 求得∠ADG=∠AGD,根据余角的性质得到 ∠AGE=∠CDF,故③正确.
    【详解】
    解:四边形是正方形,
    ,,
    ,分别是,的中点,
    ,,

    在与中,


    ,,故①正确;



    ,故②正确;

    如图,延长交的延长线于,

    点是的中点,

    ,,,


    是斜边的中线,


    ,,
    .故③正确;
    故选:D.
    【点睛】
    此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质等知识,此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.
    10.(2021·广东深圳)在正方形中,,点E是边的中点,连接,延长至点F,使得,过点F作,分别交、于N、G两点,连接、、,下列正确的是:①;②;③;④(       )

    A.4 B.3 C.2 D.1
    【答案】B
    【解析】
    【分析】
    解:①中由即可得到,再由正切等于对边比邻边即可求解;
    ②中先证明得到EM=EC,DM=FC,再证明即可求解;
    ③中先证明GECM,得到即可求解;
    ④中由得到,再由即可求解.
    【详解】
    解:①∵,
    ∴∠DMF=90°=∠NCF,且对顶角∠MND=∠CNF,
    ∴∠GFB=∠EDC,
    ∵ABCD为正方形,E是BC的中点,
    ∴BC=CD,
    ∴,①正确;
    ②由①知,
    又,已知,
    ∴(),
    ∴,
    ∴,
    ∵,,,
    ∴(),
    ∴,故②正确;
    ③∵,,
    ∴BE=ME,
    且∠B=∠GME=90°,GE为和的公共边,
    ∴(),
    ∴,
    ∵,
    ∴,
    由三角形外角定理可知:,
    ∴,
    ∴,
    ∴,
    ∵,,
    ∴,故③错误;
    ④由上述可知:,,
    ∴,
    ∵,
    ∴,
    ∴,故④正确.
    故选B.
    【点睛】
    本题考查正方形的性质,全等三角形的判定和性质,平行线分线段成比例定理,三角函数等知识,解题的关键是灵活运用所学知识解决问题.
    11.(2021·黑龙江绥化)如图所示,在矩形纸片中,,点分别是矩形的边上的动点,将该纸片沿直线折叠.使点落在矩形边上,对应点记为点,点落在处,连接与交于点.则下列结论成立的是(       )
    ①;
    ②当点与点重合时;
    ③的面积的取值范围是;
    ④当时,.

    A.①③ B.③④ C.②③ D.②④
    【答案】D
    【解析】
    【分析】
    ①根据题意可知四边形BFGE为菱形,所以EF⊥BG且BN=GN,若BN=AB,则BG=2AB=6,又因为点E是AD边上的动点,所以3

    相关试卷

    初中数学中考复习 专题25 与图形的相似有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版):

    这是一份初中数学中考复习 专题25 与图形的相似有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题25 与图形的相似有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版):

    这是一份初中数学中考复习 专题25 与图形的相似有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版),共120页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题24 与圆有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版):

    这是一份初中数学中考复习 专题24 与圆有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版),共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map