初中数学中考复习 专题10分式(1)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)
展开
这是一份初中数学中考复习 专题10分式(1)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共48页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题10分式(1)(全国一年)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.(2020·四川遂宁·中考真题)已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( )
A.8.23×10﹣6 B.8.23×10﹣7 C.8.23×106 D.8.23×107
【答案】B
【解析】
分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
详解:0.000000823=8.23×10-7.
故选B.
点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
2.(2020·内蒙古赤峰·中考真题)2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.000 000 009 9秒.数据“0. 000 000 009 9”用科学记数法表示为 ( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据科学记数法的表示方法解答即可.
【详解】
解:0. 000 000 009 9用科学记数法表示为.
故答案为:C.
【点睛】
此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.(2020·山东滨州·中考真题)冠状病毒的直径约为80~120纳米,1纳米=米,若用科学记数法表示110纳米,则正确的结果是( )
A.米 B.米 C.米 D.米
【答案】C
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:110纳米=110×10-9米=1.1×10-7米.
故选:C.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
4.(2020·内蒙古中考真题)下列命题正确的是( )
A.若分式的值为0,则x的值为±2.
B.一个正数的算术平方根一定比这个数小.
C.若,则.
D.若,则一元二次方程有实数根.
【答案】D
【解析】
【分析】
A选项:当x=2时,分式无意义;
B选项:1的算数平方根还是1;
C选项:可以让b=2,a=1,代入式子中即可做出判断;
根据根的判别式可得到结论.
【详解】
A选项:当x=2时,分式无意义,故A选项错误;
B选项:1的算数平方根还是1,不符合“一个正数的算术平方根一定比这个数小”,故B选项错误;
C选项:可以假设b=2,a=1,满足,代入式子中,通过计算发现与结论不符,故C选项错误;
D选项:,当时,,一元二次方程有实数根,故D选项正确.
故本题选择D.
【点睛】
本题主要考查分式值为0时的条件、算数平方根、不等式的性质及一元二次方程根的判别式问题,掌握分式的意义、算数平方根、不等式的性质及一元二次方程根的判别式的知识是解答本题的关键.
5.(2020·广西玉林·中考真题)2019新型冠状光病毒的直径是0.00012mm,将0.00012用科学记数法表示是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据科学记数法的表示方法表示即可.
【详解】
0.00012=.
故选C.
【点睛】
本题考查科学记数法的表示,关键在于牢记表示方法.
6.(2020·山东威海·中考真题)人民日报讯,年月日,中国成功发射北斗系统第颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统投时精度达到了十亿分之一秒,十亿分之一用科学记数法可以表示为( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据科学记数法的表示形式(n为整数)进行表示即可求解.
【详解】
,
故选:B.
【点睛】
本题主要考查了于1的数的科学记数法表示方法,熟练掌握相关的表示方法是解决本题的关键.
7.(2020·山东淄博·中考真题)化简的结果是( )
A.a+b B.a﹣b C. D.
【答案】B
【解析】
【分析】
【详解】
跟据同分母分式相加减的运算法则计算.同分母分式相加减,分母不变,分子相加减.
【解答】解:原式====a﹣b.
故选:B.
【点评】本题主要考查了分式的加减,熟记运算法则是解答本题的关键.
8.(2020·四川雅安·中考真题)若分式的值为0,则x的值为( )
A.0 B.1 C.﹣1 D.±1
【答案】B
【解析】
【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.
【详解】∵分式的值为零,
∴,
解得:x=1,
故选B.
【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.
9.(2020·云南昆明·中考真题)下列运算中,正确的是( )
A.﹣2=﹣2 B.6a4b÷2a3b=3ab
C.(﹣2a2b)3=﹣8a6b3 D.
【答案】C
【解析】
【分析】
直接利用二次根式的加减运算法则和整式的除法运算法则、分式的乘法运算法则、积的乘方运算法则分别化简得出答案.
【详解】
解:A、﹣2=﹣,此选项错误,不合题意;
B、6a4b÷2a3b=3a,此选项错误,不合题意;
C、(﹣2a2b)3=﹣8a6b3,正确;
D、==-a,故此选项错误,不合题意;
故选:C.
【点睛】
此题主要考查了二次根式的加减运算和整式的除法运算、分式的乘法运算、积的乘方运算,正确掌握相关运算法则是解题关键.
10.(2020·山东威海·中考真题)分式化简后的结果为( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算.
【详解】
解:
故选:B.
【点睛】
本题主要考查了分式的加减,熟练掌握分式通分的方法是解答本题的关键.
11.(2020·四川凉山·中考真题)下列等式成立的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
根据二次根式、绝对值、负指数幂及特殊角的三角函数值即可求解.
【详解】
A.,故错误;
B. ,故错误;
C.,正确;
D.∵,
∴无意义;
故选C.
【点睛】
此题主要考查实数的运算,解题的关键是熟知二次根式、绝对值、负指数幂及特殊角的三角函数值.
12.(2020·湖南郴州·中考真题)年月日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心点火升空.北斗卫星导航系统可提供高精度的授时服务,授时精度可达纳秒(秒=纳秒)用科学记数法表示纳秒为( )
A.秒 B.秒 C.秒 D.秒
【答案】A
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
∵1秒=1000000000纳秒,
∴10纳秒=10÷1000000000秒=0.000 00001秒=1×10-8秒.
故选:A.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
13.(2020·云南中考真题)下列运算正确的是( )
A. B.
C. D.
【答案】D
【解析】
【分析】
根据算术平方根、负整数指数幂、积的乘方、同底数幂的除法法则判断即可.
【详解】
A. ,故本选项错误;
B. ,故本选项错误;
C. ,故本选项错误;
D. ,故本选项正确;
故选:D.
【点睛】
本题主要考查了算术平方根、负整数指数幂、积的乘方、同底数幂的除法法则,牢记法则是解题的关键.
14.(2020·内蒙古呼和浩特·中考真题)下列运算正确的是( )
A.
B.
C.
D.
【答案】C
【解析】
【分析】
分别根据二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则判断即可.
【详解】
解:A、,故选项错误;
B、,故选项错误;
C、
=
=
=,故选项正确;
D、,故选项错误;
故选C.
【点睛】
本题考查了二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则,解题的关键是学会计算,掌握运算法则.
15.(2020·内蒙古中考真题)下列计算结果正确的是( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据幂的乘方、积的乘方、单项式除法、分式加法以及分式乘除混合运算的知识逐项排除即可.
【详解】
解:A. ,故A选项错误;
B. ,故B选项错误;
C. ,故C选项错误;
D. ,故D选项正确.
故答案为D.
【点睛】
本题考查了幂的乘方、积的乘方、单项式除法、分式加法以及分式乘除混合运算等知识点,掌握相关运算法则是解答本题的关键.
二、填空题
16.(2020·西藏中考真题)计算:(π﹣1)0+|﹣2|+=_____.
【答案】3+2
【解析】
【分析】
首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.
【详解】
解:(π﹣1)0+|﹣2|+
=1+2+2
=3+2.
故答案为:3+2.
【点睛】
此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.
17.(2020·江苏镇江·中考真题)根据数值转换机的示意图,输出的值为_____.
【答案】
【解析】
【分析】
利用代入法和负整数指数幂的计算方法进行计算即可.
【详解】
解:当x=﹣3时,31+x=3﹣2=,
故答案为:.
【点睛】
本题考查了代入求值及负整数指数幂.用具体的数值代替代数式中的字母,按照代数式规定的运算,求出的结果即为代数式的值.
18.(2020·山东滨州·中考真题)观察下列各式:, 根据其中的规律可得________(用含n的式子表示).
【答案】
【解析】
【分析】
观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n2+1,偶数项的分子是n2-1,即第n项的分子是n2+(-1)n+1;依此即可求解.
【详解】
解:由分析得,
故答案为:
【点睛】
本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.
19.(2020·内蒙古鄂尔多斯·中考真题)计算:+()﹣2﹣3tan60°+(π)0=_____.
【答案】10
【解析】
【分析】
直接利用零指数幂的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.
【详解】
解:+()﹣2﹣3tan60°+(π)0
=3+9﹣3+1
=10.
故答案为:10.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
20.(2020·云南昆明·中考真题)要使有意义,则x的取值范围是_____.
【答案】x≠﹣1
【解析】
【分析】
根据分式的性质即可求解.
【详解】
解:要使分式有意义,
需满足x+1≠0.
即x≠﹣1.
故答案为:x≠﹣1.
【点睛】
此题主要考查分式的性质,解题的关键是熟知分式的分母不为零.
21.(2020·山东威海·中考真题)计算的结果是__________.
【答案】
【解析】
【分析】
根据二次根式的加减运算和零指数幂的运算法则进行计算即可.
【详解】
解:
=
=,
故答案为:.
【点睛】
本题考查了二次根式的加减运算和零指数幂,掌握运算法则是解题关键.
22.(2020·甘肃金昌·中考真题)要使分式有意义,则x应满足条件____.
【答案】x≠1.
【解析】
【分析】
当分式的分母不为零时,分式有意义,即x−1≠0.
【详解】
当x﹣1≠0时,分式有意义,∴x≠1.
故答案为:x≠1.
【点睛】
本题考查分式有意义的条件;熟练掌握分式分母不为零时,分式有意义是解题的关键.
23.(2020·湖南永州·中考真题)在函数中,自变量的取值范围是________.
【答案】x≠3
【解析】
【分析】
根据分式有意义的条件,即可求解.
【详解】
∵在函数中,x-3≠0,
∴x≠3.
故答案是:x≠3.
【点睛】
本题主要考查函数的自变量的取值范围,掌握分式的分母不等于零,是解题的关键.
24.(2020·江苏宿迁·中考真题)若代数式有意义,则实数x的取值范围是________.
【答案】x≠1
【解析】
【分析】
分式有意义时,分母x-1≠0,据此求得x的取值范围.
【详解】
解:依题意得:x-1≠0,
解得x≠1,
故答案为:x≠1.
【点睛】
本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.
25.(2020·山东东营·中考真题)2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于秒,则用科学记数法表示为___.
【答案】
【解析】
【分析】
根据科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,进而求解.
【详解】
因为,
故答案为:.
【点睛】
本题考查了用科学记数法表示较小的数,一般形式为,其中1≤|a|<10,正确确定a与n的值是解题的关键.
26.(2020·黑龙江中考真题)函数中,自变量的取值范围是 .
【答案】x>2
【解析】
【分析】
根据分式有意义和二次根式有意义的条件求解.
【详解】
解:根据题意得,x﹣2>0,
解得x>2.
故答案为x>2.
【点睛】
本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
27.(2020·重庆中考真题)计算: =____.
【答案】3.
【解析】
【分析】
分别计算负整数指数幂,算术平方根,再合并即可得到答案.
【详解】
解:
故答案为:3.
【点睛】
本题考查的是负整数指数幂的运算,考查求一个数的算术平方根,掌握以上知识是解题的关键.
28.(2020·湖北荆州·中考真题)若,则a,b,c的大小关系是_______.(用
相关试卷
这是一份初中数学中考复习 专题65概率(1)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共103页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题12分式(3)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版),共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题12分式(3)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共40页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。