搜索
    上传资料 赚现金
    英语朗读宝

    重庆市全善中学巴南中学2022年中考五模数学试题含解析

    重庆市全善中学巴南中学2022年中考五模数学试题含解析第1页
    重庆市全善中学巴南中学2022年中考五模数学试题含解析第2页
    重庆市全善中学巴南中学2022年中考五模数学试题含解析第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市全善中学巴南中学2022年中考五模数学试题含解析

    展开

    这是一份重庆市全善中学巴南中学2022年中考五模数学试题含解析,共27页。试卷主要包含了如图是反比例函数等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.在下列二次函数中,其图象的对称轴为的是
    A. B. C. D.
    2.实数在数轴上的点的位置如图所示,则下列不等关系正确的是( )

    A.a+b>0 B.a-b0,
    ∴一次函数y=kx−k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,
    ∴一次函数y=kx−k的图象经过第一、三、四象限;
    故选:B.
    11、B
    【解析】
    首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴OA=OC,
    ∵AE=EB,
    ∴OE=BC,
    ∵AE+EO=4,
    ∴2AE+2EO=8,
    ∴AB+BC=8,
    ∴平行四边形ABCD的周长=2×8=16,
    故选:B.
    【点睛】
    本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握
    三角形的中位线定理,属于中考常考题型.
    12、D
    【解析】
    根据同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则逐一计算作出判断:
    A、a2•a4=a6,故此选项错误;
    B、2a2+a2=3a2,故此选项错误;
    C、a6÷a2=a4,故此选项错误;
    D、(ab2)3=a3b6,故此选项正确..
    故选D.
    考点:同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    试题解析:3-2=1.
    14、1
    【解析】
    试题分析:设点C的坐标为(x,y),则B(-2,y)D(x,-2),设BD的函数解析式为y=mx,则y=-2m,x=-,∴k=xy=(-2m)·(-)=1.
    考点:求反比例函数解析式.
    15、1<m≤2
    【解析】
    首先根据不等式恰好有个整数解求出不等式组的解集为,再确定.
    【详解】
    不等式组有个整数解,
    其整数解有、这个,
    .
    故答案为:.
    【点睛】
    此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.
    16、2.1
    【解析】
    先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.
    【详解】
    解:根据题意,设∠A、∠B、∠C为k、2k、3k,
    则k+2k+3k=180°,
    解得k=30°,
    2k=60°,
    3k=90°,
    ∵AB=10,
    ∴BC=AB=1,
    ∵CD⊥AB,
    ∴∠BCD=∠A=30°,
    ∴BD=BC=2.1.
    故答案为2.1.
    【点睛】
    本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.
    17、4:7或2:5
    【解析】
    根据E在CD上和CD的延长线上,运用相似三角形分类讨论即可.
    【详解】
    解:当E在线段CD上如图:

    ∵矩形ABCD
    ∴AB∥CD
    ∴△ABF∽△CFE

    设,即EF=2k,BF=3k
    ∴BE=BF+EF=5k
    ∴EF:BE=2k∶5k=2∶5
    当当E在线段CD的延长线上如图:

    ∵矩形ABCD
    ∴AB∥CD
    ∴△ABF∽△CFE

    设,即EF=4k,BF=3k
    ∴BE=BF+EF=7k
    ∴EF:BE=4k∶7k=4∶7
    故答案为:4:7或2:5.
    【点睛】
    本题以矩形为载体,考查了相似三角形的性质,解题的关键在于根据图形分类讨论,即数形结合的灵活应用.
    18、.
    【解析】
    设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a.求出正六边形的边长,根据S六边形GHIJKI:S六边形ABCDEF=()2,计算即可;
    【详解】
    设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a,

    作A1M⊥FA交FA的延长线于M,
    在Rt△AMA1中,∵∠MAA1=60°,
    ∴∠MA1A=30°,
    ∴AM=AA1=a,
    ∴MA1=AA1·cos30°=a,FM=5a,
    在Rt△A1FM中,FA1=,
    ∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,
    ∴△F1FL∽△A1FA,
    ∴,
    ∴,
    ∴FL=a,F1L=a,
    根据对称性可知:GA1=F1L=a,
    ∴GL=2a﹣a=a,
    ∴S六边形GHIJKI:S六边形ABCDEF=()2=,
    故答案为:.
    【点睛】
    本题考查正六边形与圆,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)200;(2)见解析;(3)126°;(4)240人.
    【解析】
    (1)根据文史类的人数以及文史类所占的百分比即可求出总人数
    (2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;
    (3)根据小说类的百分比即可求出圆心角的度数;
    (4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数
    【详解】
    (1)∵喜欢文史类的人数为76人,占总人数的38%,
    ∴此次调查的总人数为:76÷38%=200人,
    故答案为200;
    (2)∵喜欢生活类书籍的人数占总人数的15%,
    ∴喜欢生活类书籍的人数为:200×15%=30人,
    ∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,
    如图所示:

    (3)∵喜欢社科类书籍的人数为:24人,
    ∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,
    ∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,
    ∴小说类所在圆心角为:360°×35%=126°;
    (4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,
    ∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.
    【点睛】
    此题考查扇形统计图和条形统计图,看懂图中数据是解题关键
    20、
    【解析】
    原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.
    【详解】
    解:原式.
    21、(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元.
    【解析】
    (1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算
    (2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数;
    (3)设进价为y元,根据售价-进价=利润,则可得出方程即可.
    【详解】
    解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.
    根据题意,得300+0.8x=x,
    解得x=1500,
    所以当顾客消费等于1500元时,买卡与不买卡花钱相等;
    当顾客消费少于1500元时,300+0.8xx不买卡合算;
    当顾客消费大于1500元时,300+0.8xx买卡合算;
    (2)小张买卡合算,
    3500﹣(300+3500×0.8)=400,
    所以,小张能节省400元钱;
    (3)设进价为y元,根据题意,得
    (300+3500×0.8)﹣y=25%y,
    解得 y=2480
    答:这台冰箱的进价是2480元.
    【点睛】
    此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.
    22、(1)PD是⊙O的切线.证明见解析.(2)1.
    【解析】
    试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;
    (2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.
    试题解析:(1)如图,PD是⊙O的切线.
    证明如下:
    连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.
    (2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.

    考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.
    23、(1);(2)①;②;(3)t的值为或1或.
    【解析】
    (1)先根据t的值计算CQ和CP的长,由图形可知△PCQ是直角三角形,根据三角形面积公式可得结论;
    (2)分两种情况:①当Q在边AC上运动时,②当Q在边AB上运动时;分别根据勾股定理计算PQ2,最后利用圆的面积公式可得S与t的关系式;
    (3)分别当⊙O与BC相切时、当⊙O与AB相切时,当⊙O与AC相切时三种情况分类讨论即可确定答案.
    【详解】
    (1)当t=时,CQ=4t=4×=2,即此时Q与A重合,
    CP=t=,
    ∵∠ACB=90°,
    ∴S△PCQ=CQ•PC=×2×=;
    (2)分两种情况:
    ①当Q在边AC上运动时,0<t≤2,如图1,
    由题意得:CQ=4t,CP=t,
    由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,
    ∴S=π=;
    ②当Q在边AB上运动时,2<t<4如图2,
    设⊙O与AB的另一个交点为D,连接PD,
    ∵CP=t,AC+AQ=4t,
    ∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,
    ∵PQ为⊙O的直径,
    ∴∠PDQ=90°,
    Rt△ACB中,AC=2cm,AB=4cm,
    ∴∠B=30°,
    Rt△PDB中,PD=PB=,
    ∴BD=,
    ∴QD=BQ﹣BD=6﹣4t﹣=3﹣,
    ∴PQ==,
    ∴S=π==;
    (3)分三种情况:
    ①当⊙O与AC相切时,如图3,设切点为E,连接OE,过Q作QF⊥AC于F,
    ∴OE⊥AC,
    ∵AQ=4t﹣2,
    Rt△AFQ中,∠AQF=30°,
    ∴AF=2t﹣1,
    ∴FQ=(2t﹣1),
    ∵FQ∥OE∥PC,OQ=OP,
    ∴EF=CE,
    ∴FQ+PC=2OE=PQ,
    ∴(2t﹣1)+t=,
    解得:t=或﹣(舍);
    ②当⊙O与BC相切时,如图4,
    此时PQ⊥BC,
    ∵BQ=6﹣4t,PB=2﹣t,
    ∴cos30°=,
    ∴,
    ∴t=1;
    ③当⊙O与BA相切时,如图5,
    此时PQ⊥BA,
    ∵BQ=6﹣4t,PB=2﹣t,
    ∴cos30°=,
    ∴,
    ∴t=,
    综上所述,t的值为或1或.

    【点睛】
    本题是圆的综合题,涉及了三角函数、勾股定理、圆的面积、切线的性质等知识,综合性较强,有一定的难度,以点P和Q运动为主线,画出对应的图形是关键,注意数形结合的思想.
    24、(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3).
    【解析】
    (1)△ABC先沿y轴翻折,再向右平移1个单位,向下平移3个单位;或先向左平移1个单位,向下平移3个单位,再沿y轴翻折,即可得到△DEF;
    按照旋转中心、旋转角度以及旋转方向,即可得到△ABC绕点B逆时针旋转 的图形△ ;
    依据点C所形成的路径为扇形的弧,利用弧长计算公式进行计算即可.
    【详解】
    解:(1)答案不唯一例如:先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折.

    (2)分别将点C、A绕点B逆时针旋转得到点 、 ,如图所示,△即为所求;
    (3)点C所形成的路径的长为:.
    故答案为(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3)π.

    【点睛】
    本题考查坐标与图形变化旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.
    25、(1); ;(2)或;(3)存在,或或或.
    【解析】
    (1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;
    (2)利用图象直接得出结论;
    (3)分、、三种情况讨论,即可得出结论.
    【详解】
    (1)一次函数与反比例函数,相交于点,,
    ∴把代入得:,
    ∴,
    ∴反比例函数解析式为,
    把代入得:,
    ∴,
    ∴点C的坐标为,
    把,代入得:,
    解得:,
    ∴一次函数解析式为;
    (2)根据函数图像可知:
    当或时,一次函数的图象在反比例函数图象的上方,
    ∴当或时,;
    (3)存在或或或时,为等腰三角形,理由如下:
    过作轴,交轴于,

    ∵直线与轴交于点,
    ∴令得,,
    ∴点A的坐标为,
    ∵点B的坐标为,
    ∴点D的坐标为,
    ∴,
    ①当时,则,

    ∴点P的坐标为:、;
    ②当时,
    是等腰三角形,,
    平分,

    ∵点D的坐标为,
    ∴点P的坐标为,即;
    ③当时,如图:

    设,
    则,
    在中,,,,
    由勾股定理得:


    解得:,

    ∴点P的坐标为,即,
    综上所述,当或或或时,为等腰三角形.
    【点睛】
    本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x的范围,解(3)的关键是分类讨论.
    26、(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人.
    【解析】
    (1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.
    【详解】
    (1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,
    ∴总调查人数=20÷20%=100人;
    (2)参加娱乐的人数=100×40%=40人,
    从条形统计图中得出参加阅读的人数为30人,
    ∴“其它”类的人数=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,
    在扇形统计图中“其它”类的圆心角=360×10%=36°;
    (3)如图

    (4)估计一下全校课余爱好是阅读的学生约为3200×=960(人).
    【点睛】
    本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.
    27、 (1),;(1),.
    【解析】
    (1)由点A在一次函数图象上,将A(-1,a)代入y=x+4,求出a的值,得到点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
    (1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA.利用待定系数法求出直线A′B′的解析式,进而求出P、Q两点坐标.
    【详解】
    解:(1)把点A(-1,a)代入一次函数y=x+4,
    得:a=-1+4,解得:a=3,
    ∴点A的坐标为(-1,3).
    把点A(-1,3)代入反比例函数y=,
    得:k=-3,
    ∴反比例函数的表达式y=-.
    联立两个函数关系式成方程组得:
    解得: 或
    ∴点B的坐标为(-3,1).
    故答案为3,(-3,1);
    (1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA,如图所示.

    ∵点B、B′关于x轴对称,点B的坐标为(-3,1),
    ∴点B′的坐标为(-3,-1),PB=PB′,
    ∵点A、A′关于y轴对称,点A的坐标为(-1,3),
    ∴点A′的坐标为(1,3),QA=QA′,
    ∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.
    设直线A′B′的解析式为y=mx+n,
    把A′,B′两点代入得:
    解得:
    ∴直线A′B′的解析式为y=x+1.
    令y=0,则x+1=0,解得:x=-1,点P的坐标为(-1,0),
    令x=0,则y=1,点Q的坐标为(0,1).
    【点睛】
    本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交点坐标;(1)根据轴对称的性质找出点P、Q的位置.本题属于基础题,难度适中,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键.

    相关试卷

    重庆市全善中学巴南中学2023年数学八年级第一学期期末调研模拟试题【含解析】:

    这是一份重庆市全善中学巴南中学2023年数学八年级第一学期期末调研模拟试题【含解析】,共24页。试卷主要包含了下列说法错误的是,若分式的值为0,则为等内容,欢迎下载使用。

    重庆市全善中学巴南中学2023年数学八年级第一学期期末考试模拟试题【含解析】:

    这是一份重庆市全善中学巴南中学2023年数学八年级第一学期期末考试模拟试题【含解析】,共18页。试卷主要包含了考生要认真填写考场号和座位序号,x,y满足方程,则的值为等内容,欢迎下载使用。

    重庆市全善中学巴南中学2023-2024学年八年级数学第一学期期末学业水平测试模拟试题【含解析】:

    这是一份重庆市全善中学巴南中学2023-2024学年八年级数学第一学期期末学业水平测试模拟试题【含解析】,共21页。试卷主要包含了下列命题是真命题的是,如果分式的值为0,则x的值是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map