浙江省杭州市富阳市达标名校2022年中考数学模拟预测题含解析
展开
这是一份浙江省杭州市富阳市达标名校2022年中考数学模拟预测题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,2016的相反数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是( )
A.仅有甲和乙相同 B.仅有甲和丙相同
C.仅有乙和丙相同 D.甲、乙、丙都相同
2.|﹣3|=( )
A. B.﹣ C.3 D.﹣3
3.下列运算正确的是( )
A. B.
C.a2•a3=a5 D.(2a)3=2a3
4.下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )
A. B. C. D.
5.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于( )
A. B. C.2 D.
6.2016的相反数是( )
A. B. C. D.
7.如图所示图形中,不是正方体的展开图的是( )
A. B.
C. D.
8.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( )
A.25和30 B.25和29 C.28和30 D.28和29
9.如图①是半径为2的半圆,点C是弧AB的中点,现将半圆如图②方式翻折,使得点C与圆心O重合,则图中阴影部分的面积是( )
A. B.﹣ C.2+ D.2﹣
10.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A. B. C. D.
11.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )
A.1:3 B.1:4 C.1:5 D.1:6
12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.
B.
C.
D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知:如图,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为__.
14.阅读下面材料:
在数学课上,老师提出利用尺规作图完成下面问题:
已知:∠ACB是△ABC的一个内角.
求作:∠APB=∠ACB.
小明的做法如下:
如图
①作线段AB的垂直平分线m;
②作线段BC的垂直平分线n,与直线m交于点O;
③以点O为圆心,OA为半径作△ABC的外接圆;
④在弧ACB上取一点P,连结AP,BP.
所以∠APB=∠ACB.
老师说:“小明的作法正确.”
请回答:
(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____;
(2)∠APB=∠ACB的依据是_____.
15.因式分解:4ax2﹣4ay2=_____.
16.已知实数a、b、c满足+|10﹣2c|=0,则代数式ab+bc的值为__.
17.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标____________.
18.已知线段AB=10cm,C为线段AB的黄金分割点(AC>BC),则BC=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.
(1)如图1,线段EH、CH、AE之间的数量关系是 ;
(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.
20.(6分)已知正方形ABCD的边长为2,作正方形AEFG(A,E,F,G四个顶点按逆时针方向排列),连接BE、GD,
(1)如图①,当点E在正方形ABCD外时,线段BE与线段DG有何关系?直接写出结论;
(2)如图②,当点E在线段BD的延长线上,射线BA与线段DG交于点M,且DG=2DM时,求边AG的长;
(3)如图③,当点E在正方形ABCD的边CD所在的直线上,直线AB与直线DG交于点M,且DG=4DM时,直接写出边AG的长.
21.(6分)如图,已知的直径,是的弦,过点作的切线交的延长线于点,过点作,垂足为,与交于点,设,的度数分别是,,且.
(1)用含的代数式表示;
(2)连结交于点,若,求的长.
22.(8分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)
23.(8分)的除以20与18的差,商是多少?
24.(10分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?
25.(10分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI),得到以下数据:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1.
(1)请你完成如下的统计表;
AQI
0~50
51~100
101~150
151~200
201~250
300以上
质量等级
A(优)
B(良)
C(轻度污染)
D(中度污染)
E(重度污染)
F(严重污染)
天数
(2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图;
(3)请你估计该市全年空气质量等级为“重度污染”和“严重污染”的天数.
26.(12分)如图,△ABC内接于⊙O,过点C作BC的垂线交⊙O于D,点E在BC的延长线上,且∠DEC=∠BAC.求证:DE是⊙O的切线;若AC∥DE,当AB=8,CE=2时,求⊙O直径的长.
27.(12分)解不等式组:.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
试题分析:根据分析可知,甲的主视图有2列,每列小正方数形数目分别为2,2;乙的主视图有2列,每列小正方数形数目分别为2,1;丙的主视图有2列,每列小正方数形数目分别为2,2;则主视图相同的是甲和丙.
考点:由三视图判断几何体;简单组合体的三视图.
2、C
【解析】
根据绝对值的定义解答即可.
【详解】
|-3|=3
故选:C
【点睛】
本题考查的是绝对值,理解绝对值的定义是关键.
3、C
【解析】
根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断.
【详解】
解:A、=2,此选项错误;
B、不能进一步计算,此选项错误;
C、a2•a3=a5,此选项正确;
D、(2a)3=8a3,此选项计算错误;
故选:C.
【点睛】
本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则.
4、D
【解析】
根据中心对称图形的定义解答即可.
【详解】
选项A不是中心对称图形;
选项B不是中心对称图形;
选项C不是中心对称图形;
选项D是中心对称图形.
故选D.
【点睛】
本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.
5、D
【解析】
根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD,再结合图形根据正切的定义进行求解即可得.
【详解】
∵∠DAB=∠DEB,
∴tan∠DEB= tan∠DAB=,
故选D.
【点睛】
本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.
6、C
【解析】
根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.
故选C.
7、C
【解析】
由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题.
【详解】
解:A、B、D都是正方体的展开图,故选项错误;
C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.
故选C.
【点睛】
此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题
8、D
【解析】
【分析】根据中位数和众数的定义进行求解即可得答案.
【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,
处于最中间是数是28,
∴这组数据的中位数是28,
在这组数据中,29出现的次数最多,
∴这组数据的众数是29,
故选D.
【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
9、D
【解析】
连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=OM,得到∠POM=60°,根据勾股定理求出MN,结合图形计算即可.
【详解】
解:连接OC交MN于点P,连接OM、ON,
由题意知,OC⊥MN,且OP=PC=1,
在Rt△MOP中,∵OM=2,OP=1,
∴cos∠POM==,AC==,
∴∠POM=60°,MN=2MP=2,
∴∠AOB=2∠AOC=120°,
则图中阴影部分的面积=S半圆-2S弓形MCN
=×π×22-2×(-×2×1)
=2- π,
故选D.
【点睛】
本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.
10、A
【解析】
分析:甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,。故选A。
11、C
【解析】
根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.
【详解】
解:连接CE,∵AE∥BC,E为AD中点,
∴ .
∴△FEC面积是△AEF面积的2倍.
设△AEF面积为x,则△AEC面积为3x,
∵E为AD中点,
∴△DEC面积=△AEC面积=3x.
∴四边形FCDE面积为1x,
所以S△AFE:S四边形FCDE为1:1.
故选:C.
【点睛】
本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.
12、D
【解析】
根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.
【详解】
设每枚黄金重x两,每枚白银重y两,
由题意得:,
故选:D.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2﹣π.
【解析】
试题分析:根据题意可得:∠O=2∠A=60°,则△OBC为等边三角形,根据∠BCD=30°可得:∠OCD=90°,OC=AC=2,则CD=,,则.
14、①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换 同弧所对的圆周角相等
【解析】
(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.
(2)根据同弧所对的圆周角相等即可得出结论.
【详解】
(1)如图2中,
∵MN垂直平分AB,EF垂直平分BC,
∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),
∴OA=OB=OC(等量代换)
故答案是:
(2)∵,
∴∠APB=∠ACB(同弧所对的圆周角相等).
故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.
【点睛】
考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质.
15、4a(x﹣y)(x+y)
【解析】
首先提取公因式4a,再利用平方差公式分解因式即可.
【详解】
4ax2-4ay2=4a(x2-y2)
=4a(x-y)(x+y).
故答案为4a(x-y)(x+y).
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
16、-1
【解析】
试题分析:根据非负数的性质可得:,解得:,则ab+bc=(-11)×6+6×5=-66+30=-1.
17、 (-1,0)
【解析】
根据已知条件由图中可以得到B1所在的正方形的对角线长为,B2所在的正方形的对角线长为()2,B3所在的正方形的对角线长为()3;B4所在的正方形的对角线长为()4;B5所在的正方形的对角线长为()5;可推出B6所在的正方形的对角线长为()6=1.又因为B6在x轴负半轴,所以B6(-1,0).
解:如图所示
∵正方形OBB1C,
∴OB1=,B1所在的象限为第一象限;
∴OB2=()2,B2在x轴正半轴;
∴OB3=()3,B3所在的象限为第四象限;
∴OB4=()4,B4在y轴负半轴;
∴OB5=()5,B5所在的象限为第三象限;
∴OB6=()6=1,B6在x轴负半轴.
∴B6(-1,0).
故答案为(-1,0).
18、(15-5).
【解析】
试题解析:∵C为线段AB的黄金分割点(AC>BC),
∴AC=AB=AC=×10=5-5,
∴BC=AB-AC=10-(5-5)=(15-5)cm.
考点:黄金分割.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1) EH2+CH2=AE2;(2)见解析.
【解析】
分析:(1)如图1,过E作EM⊥AD于M,由四边形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通过△DME≌△DHE,根据全等三角形的性质得到EM=EH,DM=DH,等量代换得到AM=CH,根据勾股定理即可得到结论;
(2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE≌△DCG,根据全等三角形的性质即可得到结论.
详解:
(1)EH2+CH2=AE2,
如图1,过E作EM⊥AD于M,
∵四边形ABCD是菱形,
∴AD=CD,∠ADE=∠CDE,
∵EH⊥CD,
∴∠DME=∠DHE=90°,
在△DME与△DHE中,
,
∴△DME≌△DHE,
∴EM=EH,DM=DH,
∴AM=CH,
在Rt△AME中,AE2=AM2+EM2,
∴AE2=EH2+CH2;
故答案为:EH2+CH2=AE2;
(2)如图2,
∵菱形ABCD,∠ADC=60°,
∴∠BDC=∠BDA=30°,DA=DC,
∵EH⊥CD,
∴∠DEH=60°,
在CH上截取HG,使HG=EH,
∵DH⊥EG,∴ED=DG,
又∵∠DEG=60°,
∴△DEG是等边三角形,
∴∠EDG=60°,
∵∠EDG=∠ADC=60°,
∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,
∴∠ADE=∠CDG,
在△DAE与△DCG中,
,
∴△DAE≌△DCG,
∴AE=GC,
∵CH=CG+GH,
∴CH=AE+EH.
点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线.
20、(1)结论:BE=DG,BE⊥DG.理由见解析;(1)AG=1;(3)满足条件的AG的长为1或1.
【解析】
(1)结论:BE=DG,BE⊥DG.只要证明△BAE≌△DAG(SAS),即可解决问题;
(1)如图②中,连接EG,作GH⊥AD交DA的延长线于H.由A,D,E,G四点共圆,推出∠ADO=∠AEG=45°,解直角三角形即可解决问题;
(3)分两种情形分别画出图形即可解决问题;
【详解】
(1)结论:BE=DG,BE⊥DG.
理由:如图①中,设BE交DG于点K,AE交DG于点O.
∵四边形ABCD,四边形AEFG都是正方形,
∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
∴∠BAE=∠DAG,
∴△BAE≌△DAG(SAS),
∴BE=DG,∴∠AEB=∠AGD,
∵∠AOG=∠EOK,
∴∠OAG=∠OKE=90°,
∴BE⊥DG.
(1)如图②中,连接EG,作GH⊥AD交DA的延长线于H.
∵∠OAG=∠ODE=90°,
∴A,D,E,G四点共圆,
∴∠ADO=∠AEG=45°,
∵∠DAM=90°,
∴∠ADM=∠AMD=45°,
∴
∵DG=1DM,
∴
∵∠H=90°,
∴∠HDG=∠HGD=45°,
∴GH=DH=4,
∴AH=1,
在Rt△AHG中,
(3)①如图③中,当点E在CD的延长线上时.作GH⊥DA交DA的延长线于H.
易证△AHG≌△EDA,可得GH=AB=1,
∵DG=4DM.AM∥GH,
∴
∴DH=8,
∴AH=DH﹣AD=6,
在Rt△AHG中,
②如图3﹣1中,当点E在DC的延长线上时,易证:△AKE≌△GHA,可得AH=EK=BC=1.
∵AD∥GH,
∴
∵AD=1,
∴HG=10,
在Rt△AGH中,
综上所述,满足条件的AG的长为或.
【点睛】
本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,平行线分线段成比例定理,等腰直角三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
21、(1);(2)
【解析】
(1)连接OC,根据切线的性质得到OC⊥DE,可以证明AD∥OC,根据平行线的性质可得,则根据等腰三角形的性质可得,利用,化简计算即可得到答案;
(2)连接CF,根据,可得,利用中垂线和等腰三角形的性质可证四边形是平行四边形,得到△AOF为等边三角形,由并可得四边形是菱形,可证是等边三角形,有∠FAO=60°,再根据弧长公式计算即可.
【详解】
解:(1)如图示,连结,
∵是的切线,∴.
又,∴,
∴,
∴.
∵,
∴.∴.
∵,
∴.
∴,即.
(2)如图示,连结,
∵,,
∴,
∴,
∴,
∴,
∵,
∴四边形是平行四边形,
∵,
∴四边形是菱形,
∴,
∴是等边三角形,
∴,
∴,
∵,
∴的长.
【点睛】
本题考查的是切线的性质、菱形的判定和性质、弧长的计算,掌握切线的性质定理、弧长公式是解题的关键.
22、电视塔高为米,点的铅直高度为(米).
【解析】
过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=100,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.
【详解】
过点P作PF⊥OC,垂足为F.
在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=100(米),
过点P作PB⊥OA,垂足为B.
由i=1:2,设PB=x,则AB=2x.
∴PF=OB=100+2x,CF=100﹣x.
在Rt△PCF中,由∠CPF=45°,
∴PF=CF,即100+2x=100﹣x,
∴x= ,即PB=米.
【点睛】
本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.
23、
【解析】
根据题意可用乘的积除以20与18的差,所得的商就是所求的数,列式解答即可.
【详解】
解:×÷(20﹣18)
【点睛】
考查有理数的混合运算,列出式子是解题的关键.
24、 (1)4元/瓶.(2) 销售单价至少为1元/瓶.
【解析】
(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.
【详解】
(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,
依题意,得:=3×,
解得:x=4,
经检验,x=4是原方程的解,且符合题意.
答:第一批饮料进货单价是4元/瓶;
(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.
设销售单价为y元/瓶,
依题意,得:(450+1350)y﹣1800﹣8100≥2100,
解得:y≥1.
答:销售单价至少为1元/瓶.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
25、(1)补全统计表见解析;(2)该市2018年空气质量等级条形统计图见解析;(3)29天.
【解析】
(1)由已知数据即可得;
(2)根据统计表作图即可得;
(3)全年365天乘以样本中“重度污染”和“严重污染”的天数和所占比例.
【详解】
(1)补全统计表如下:
AQI
0~50
51~100
101~150
151~200
201~250
300以上
质量等级
A(优)
B(良)
C(轻度污染)
D(中度污染)
E(重度污染)
F(严重污染)
天数
16
20
7
3
3
1
(2)该市2018年空气质量等级条形统计图如下:
(3)估计该市全年空气质量等级为“重度污染”和“严重污染”的天数为365×≈29天.
【点睛】
本题考查了条形统计图的应用与用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.
26、(1)见解析;(2)⊙O直径的长是4.
【解析】
(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;
(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BDC∽△BED,求出BD,即可得出结论.
【详解】
证明:(1)连接BD,交AC于F,
∵DC⊥BE,
∴∠BCD=∠DCE=90°,
∴BD是⊙O的直径,
∴∠DEC+∠CDE=90°,
∵∠DEC=∠BAC,
∴∠BAC+∠CDE=90°,
∵弧BC=弧BC,
∴∠BAC=∠BDC,
∴∠BDC+∠CDE=90°,
∴BD⊥DE,
∴DE是⊙O切线;
解:(2)∵AC∥DE,BD⊥DE,
∴BD⊥AC.
∵BD是⊙O直径,
∴AF=CF,
∴AB=BC=8,
∵BD⊥DE,DC⊥BE,
∴∠BCD=∠BDE=90°,∠DBC=∠EBD,
∴△BDC∽△BED,
∴=,
∴BD2=BC•BE=8×10=80,
∴BD=4.
即⊙O直径的长是4.
【点睛】
此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键.
27、﹣4≤x<1
【解析】
先求出各不等式的
【详解】
解不等式x﹣1<2,得:x<1,
解不等式2x+1≥x﹣1,得:x≥﹣4,
则不等式组的解集为﹣4≤x<1.
【点睛】
考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
相关试卷
这是一份浙江省杭州北干重点达标名校2021-2022学年中考数学模拟预测题含解析,共25页。试卷主要包含了答题时请按要求用笔,已知二次函数,下列计算正确的是等内容,欢迎下载使用。
这是一份2022年浙江省杭州市名校中考数学模拟预测题含解析,共20页。试卷主要包含了如图,△OAB∽△OCD,OA等内容,欢迎下载使用。
这是一份2022届浙江省台州仙居重点达标名校中考数学模拟预测题含解析,共17页。试卷主要包含了在代数式 中,m的取值范围是等内容,欢迎下载使用。