所属成套资源:湖南省五市十校教研教改联合体2022-2023高二各学科上学期期中试卷(Word版附解析)
湖南省五市十校教研教改联合体2022-2023学年高二数学上学期期中试卷(Word版附解析)
展开
这是一份湖南省五市十校教研教改联合体2022-2023学年高二数学上学期期中试卷(Word版附解析),共17页。试卷主要包含了已知函数,下列说法正确的是,下列说法正确的是等内容,欢迎下载使用。
绝密★启用前五市十校教研教改共同体 三湘名校教育联盟 湖湘名校教育联合体2022年下学期高二期中考试数学命题:双峰一中数学备课组 审题:永州一中数学备课组本试卷共4页。全卷满分150分,考试时间120分钟。注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如有改动,用橡皮擦干净后,再选涂其他答案;回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.2.已知圆C的圆心坐标为,且过坐标原点,则圆C的方程为( )A. B.C. D.3.党的十八大报告指出,必须坚持在发展中保障和改善民生,不断实现人民对美好生活的向往,为响应中央号召,某社区决定在现有的休闲广场内修建一个半径为4m的圆形水池来规划喷泉景观.设计如下:在水池中心竖直安装一根高出水面为2m的喷水管(水管半径忽略不计),它喷出的水柱呈抛物线型,要求水柱在与水池中心水平距离为处达到最高,且水柱刚好落在池内,则水柱的最大高度为( )A. B. C. D.4.已知是等比数列的前n项和,,,成等差数列,则下列结论正确的是( )A. B. C. D.5.已知幂函数的图象是等轴双曲线C,且它的焦点在直线上,则下列曲线中,与曲线C的实轴长相等的双曲线是( )A. B. C. D.6.已知函数,下列说法正确的是( )A.函数的最小正周期是 B.函数的最大值为C.函数的图象关于点对称 D.函数在区间上单调递增7.如图水平放置的边长为1的正方形沿x轴正向滚动,初始时顶点A在坐标原点,(沿x轴正向滚动指的是先以顶点B为中心顺时针旋转,再以顶点C为中心顺时针旋转,如此继续),设顶点的轨迹方程式,则( )A.0 B.1 C. D.8.已知三棱锥中,,,,若二面角的大小为120°,则三棱锥的外接球的表面积为( )A. B. C. D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是( )A.命题“,”的否定为“,”B.在中,若“”,则“”C.若,则的充要条件是D.若直线与平行,则或210.已知各项均为正数的等差数列单调递增,且,则( )A.公差d的取值范围是 B.C. D.的最小值为111.已知直线l与抛物线()交于A,B两点,,,则下列说法正确的是( )A.若点D的坐标为,则B.直线过定点C.D点的轨迹方程为(原点除外)D.设与x轴交于点M,则的面积最大时,直线的斜率为112.在正方体中,,点M在正方体内部及表面上运动,下列说法正确的是( )A.若M为棱的中点,则直线平面B.若M在线段上运动,则的最小值为C.当M与重合时,以M为球心,为半径的球与侧面的交线长为D.若M在线段上运动,则M到直线的最短距离为三、填空题:本题共4小题,每小题5分,共20分.13.某中学高一年级有600人,高二年级有480人,高三年级有420人,因新冠疫情防控的需要,现用分层抽样从中抽取一个容量为300人的样本进行核酸检测,则高三年级被抽取的人数为___________.14.设双曲线C:(,)的左、右焦点分别为、,P是渐近线上一点,且满足,,则双曲线C的离心率为___________.15.已知动点在运动过程中总满足关系式,记,,则面积的最大值为___________.16.意大利数学家斐波那契在研究兔子繁殖问题时发现了数列1,1,2,3,5,8,13,…,数列中的每一项被称为斐波那契数,用符号表示(),已知,,().(1)若,则___________(2分);(2)若,则___________(3分).四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(本小题满分10分)已知双曲线C:(,)的左右焦点分别为,,点M在双曲线C的右支上,且,离心率.(1)求双曲线C的标准方程;(2)若,求的面积.18.(本小题满分12分)10月9日晚,2022年世界乒乓球团体锦标赛在中国成都落幕.中国队女团与男团分别完成了五连冠与十连冠的霸业.乒乓球运动在我国一直有着光荣历史,始终领先世界水平,被国人称为“国球”,在某次团体选拔赛中,甲乙两队进行比赛,采取五局三胜制(即先胜三局的团队获得比赛的胜利),假设在一局比赛中,甲队获胜的概率为0.6,乙队获胜的概率为0.4,各局比赛结果相对独立.(1)求这场选拔赛三局结束的概率;(2)若第一局比赛乙队获胜,求比赛进入第五局的概率.19.(本小题满分12分)已知锐角三角形中,角A,B,C所对的边分别为a,b,c,向量,,且.(1)求角B的大小;(2)若,求面积的取值范围.20.(本小题满分12分)已知数列满足,且,数列是各项均为正数的等比数列,为的前n项和,满足,.(1)求数列的通项公式;(2)设,记数列的前n项和为,求的取值范围.21.(本小题满分12分)如图,在四棱锥中,,,,平面平面,E为中点.(1)求证:面;(2)求证:面;(3)点Q在棱上,设(),若二面角的余弦值为,求.22.(本小题满分12分)已知椭圆C:()过点,A为左顶点,且直线的斜率为.(1)求椭圆C的标准方程;(2)设在椭圆内部,在椭圆外部,过M作斜率不为0的直线交椭圆C于P,Q两点,若,求证:为定值,并求出这个定值.
五市十校教研教改共同体 三湘名校教育联盟 湖湘名校教育联合体2022年下学期高二期中考试数学参考答案、提示及评分细则一、选择题:(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】C【解析】∵,∴.2.【答案】B【解析】圆心,半径,故圆C方程为.3.【答案】C【解析】取一截面建系如图,设抛物线方程为(),记最大高度为h,如图:,在抛物线上,故,两式相除有,解得.4.【答案】AB【解析】若公比有,,,此时,故公比,由题意,化简有,故有或,选答案AB.5.【答案】B【解析】由双曲线几何性质知,双曲线的焦点在实轴上,实轴与双曲线的交点,是双曲线的顶点,故双曲线C的实轴长,选答案B.6.【答案】D【解析】由知A,B错误.由,所以C错误.当时,,所以D正确.7.【答案】D【解析】A点运动轨迹最终构成图象如图:由图可知.故,在B→D段时,A点的轨迹方程为(),∴.8.【答案】C【解析】由题意,取中点,中点,连接,则,分别是与的外心,且,分别过,作面,面,记,则O为外接球球心,在中,,∴,故,选C.二、多选题(本题共4小题,每小题5分,在每小题给出的选项中,有多项符合要求,全部选对的得5分,有选错的得0分,部分选对的得2分)9.【答案】BC【解析】对A:否定为:,,所以A错误;对D,当时,两直线重合,所以D错误.10.【答案】AB【解析】由题意得,,∴,故A正确;由,故B正确;由,知故C错误;由有,当且仅当时取到等号,但,故不能取“=”,所以D错.11.【答案】ABC【解析】,由知方程为,联立,消去x有,记,,则,由,∴,故A正确;对选项BCD,可设:,代入有,则,由,故直线为,过定点,即,故B正确;由,得D在以为直径的圆:上运动(原点除外),故C正确;当时,面积最大,此时,有,故D错误.12.【答案】ACD【解析】易知A,D正确;对选项B:展开与到同一平面上如图.知,故B错误;对选项C:M与重合时,在侧面上的射影为,故交线是以为圆心的一段圆弧(个圆),且圆半径,故圆弧长,所以C正确.三、填空题(本题共4小题,每小题5分,共20分)13.【答案】84【解析】由分层抽样易得.14.【答案】【解析】不妨设P在第一象限,则,依题意:,∴离线率.15.【答案】18【解析】易得M在椭圆上运动,且B在椭圆上,A为左顶点,由方程:,设直线l:与椭圆相切于点M.联立,消去x得,由,依题意,时,面积最大,此时直线l与距离为,又,∴.16.【答案】(1)11(2分) (2)(3分)【解析】(1),∴;(2).四、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】(1) (2)【解析】(1)由题意,································································1分∴,···············································································2分又,···············································································3分∴,···············································································4分故双曲线C的方程为;··································································5分(2),,则由双曲线定义可得 ①,由三角形余弦定理得 ②,······························································7分有,···············································································9分∴的面积.··········································································10分18.【答案】(1)0.28 (2)0.432【解析】设“第i局甲胜”为事件,“第j局乙胜”为事件(i,,2,3,4,5),(1)记“三局结束比赛”,则,·························································2分∴;·················································································6分(2)记“决胜局进入第五局比赛”,则,··················································8分∴.·················································································12分19.【答案】(1) (2)【解析】(1)由,···································································2分由正弦定理得,······································································4分又,∴,···········································································6分(2)解法一:在锐角中,由(1)知,,有,令,则,,由正弦定理得,的面积 ································································8分,················································································10分由得,,则,于是得,所以面积的取值范围是.································································12分解法二:由(1)可知,,故,又因为,所以,·············································································8分又因为,,所以,故,即有,则,·········································································10分又由,即,所以面积的取值范围是.································································12分20【答案】(1) (2)【解析】(1)由,···································································1分∴(常数),········································································2分故数列是以为公差的等差数列,且首项为,··········································································3分∴,···············································································4分故;···············································································5分(2)设公比为q(),由题意:,∴,解得或(舍),∴,∴,···············································································7分∴,有,两式相减得,·················································································9分∴,··············································································10分由,知在上单调递增,································································11分∴.···············································································12分21.【答案】(1)略 (2)略 (3)【解析】(1)证明:取中点F,连接,,则,又,∴,∴四边形是平行四边形,∴,又面,面,∴面;·············································································4分(2)证明:由题意:,,∴,同理,又,∴,∴,···············································································6分又面面,∴面,∴.又且,∴面;·············································································8分(3)以D为原点,建立如图所示的空间直角坐标系,则,,,,∴,,,由,有,··········································································10分令是面的法向量,则,令,有,··········································································11分取面的法向量,由.···············································································12分22.【答案】(1) (2)为定值4,证明略【解析】(1)由题意:,∴,故椭圆C的标准方程为;································································4分(2)设:,联立消去x,有,记,,则且,,···········································································7分若,则·············································································9分(),∴(定值),综上:为定值4.····································································...12分
相关试卷
这是一份湖南省五市十校教研教改共同体2024届高三上学期12月大联考数学试题(Word版附解析),共22页。
这是一份湖南省五市十校教研教改共同体2023-2024学年高二上学期期中联考数学试题(Word版附解析),共21页。
这是一份2023-2024学年湖南省五市十校教研教改共同体高二上学期期中联考数学试卷含答案,文件包含湖南省五市十校教研教改共同体2023-2024学年高二上学期期中联考数学试题原卷版docx、湖南省五市十校教研教改共同体2023-2024学年高二上学期期中联考数学试题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。