所属成套资源:2020-2022近三年山东中考数学真题及答案解析
2020-2022年山东中考数学3年真题汇编 专题21 相似三角形(学生卷+教师卷)
展开这是一份2020-2022年山东中考数学3年真题汇编 专题21 相似三角形(学生卷+教师卷),文件包含专题21相似三角形-三年2020-2022中考数学真题分项汇编山东专用解析版docx、专题21相似三角形-三年2020-2022中考数学真题分项汇编山东专用原卷版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
专题21 相似三角形
一、单选题
1.(2022·山东东营·中考真题)如图,点D为边上任一点,交于点E,连接相交于点F,则下列等式中不成立的是( )
A. B. C. D.
【答案】C
【分析】根据平行线分线段成比例定理即可判断A,根据相似三角形的性质即可判断B、C、D.
【详解】解:∵,
∴,△DEF∽△CBF,△ADE∽△ABC,故A不符合题意;
∴,,故B不符合题意,C符合题意;
∴,故D不符合题意;
故选C.
【点睛】本题主要考查了相似三角形的性质与判定,平行线分线段成比例定理,熟知相似三角形的性质与判定,平行线分线段成比例定理是解题的关键.
2.(2022·山东威海·中考真题)由12个有公共顶点O的直角三角形拼成如图所示的图形,∠AOB=∠BOC=∠COD=…=∠LOM=30°.若S△AOB=1,则图中与△AOB位似的三角形的面积为( )
A.()3 B.()7 C.()6 D.()6
【答案】C
【分析】根据题意得出A、O、G在同一直线上,B、O、H在同一直线上,确定与△AOB位似的三角形为△GOH,利用锐角三角函数找出相应规律得出OG=,再由相似三角形的性质求解即可.
【详解】解:∵∠AOB=∠BOC=∠COD=…=∠LOM=30°
∴∠AOG=180°,∠BOH=180°,
∴A、O、G在同一直线上,B、O、H在同一直线上,
∴与△AOB位似的三角形为△GOH,
设OA=x,
则OB=,
∴OC=,
∴OD=,
…
∴OG=,
∴,
∴,
∵,
∴,
故选:C.
【点睛】题目主要考查利用锐角三角函数解三角形,找规律问题,相似三角形的性质等,理解题意,找出相应边的比值规律是解题关键.
3.(2022·山东临沂·中考真题)如图,在中,,,若,则( )
A. B. C. D.
【答案】C
【分析】由,,可得再建立方程即可.
【详解】解: ,,
,
解得:经检验符合题意
故选C
【点睛】本题考查的是平行线分线段成比例,证明“”是解本题的关键.
4.(2021·山东淄博·中考真题)如图,相交于点,且,点在同一条直线上.已知,则之间满足的数量关系式是( )
A. B. C. D.
【答案】C
【分析】由题意易得,,则有,,然后可得,进而问题可求解.
【详解】解:∵,
∴,,
∴,,
∴,
∵,
∴,即;
故选C.
【点睛】本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.
二、填空题
5.(2022·山东东营·中考真题)如图,在中,点F、G在上,点E、H分别在、上,四边形是矩形,是的高.,那么的长为____________.
【答案】##4.8
【分析】通过四边形EFGH为矩形推出,因此△AEH与△ABC两个三角形相似,将AM视为△AEH的高,可得出,再将数据代入即可得出答案.
【详解】∵四边形EFGH是矩形,
∴,
∴,
∵AM和AD分别是△AEH和△ABC的高,
∴,
∴,
∵,
代入可得:,
解得,
∴,
故答案为:.
【点睛】本题考查了相似三角形的判定和性质及矩形的性质,灵活运用相似三角形的性质是本题的关键.
6.(2022·山东潍坊·中考真题)《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形的面积为4,以它的对角线的交点为位似中心,作它的位似图形,若,则四边形的外接圆的周长为___________.
【答案】
【分析】根据正方形ABCD的面积为4,求出,根据位似比求出,周长即可得出;
【详解】解:正方形ABCD的面积为4,
,
,
,
,
所求周长;
故答案为:.
【点睛】本题考查位似图形,涉及知识点:正方形的面积,正方形的对角线,圆的周长,解题关键求出正方形ABCD的边长.
7.(2021·山东菏泽·中考真题)如图,在中,,垂足为,,,四边形和四边形均为正方形,且点、、、、、都在的边上,那么与四边形的面积比为______.
【答案】1∶3
【分析】先设四边形和四边形的边长为x,然后根据AEM∽ABC可得,进而可求得AP=2.5,EM=5,然后分别求得S△AEM=,S△ABC=25,即可求得S四边形BCME=S△ABC-S△AEM=,由此可得答案.
【详解】解:∵四边形和四边形均为正方形,
∴设四边形和四边形的边长为x,
则EM=2x,EF=x,EF⊥BC,EM∥BC,
∵AD⊥BC,
∴PD=EF=x,
∵AD=5,
∴AP=AD-PD=5-x,
∵EMBC,
∴AEM∽ABC,
∴,
∴,
解得:x=2.5,
∴AP=2.5,EM=5,
∴S△AEM==,
又∵S△ABC==25,
∴S四边形BCME=S△ABC-S△AEM
=25-
=,
∴S△AEM∶S四边形BCME=∶=1∶3,
故答案为:1∶3.
【点睛】本题考查了正方形的性质、相似三角形的判定及性质,熟练掌握相似三角形的判定及性质是解决本题的关键.
8.(2021·山东泰安·中考真题)如图,点在直线上,点的横坐标为2,过点作,交x轴于点,以为边,向右作正方形,延长交x轴于点;以为边,向右作正方形,延长交x轴于点;以为边,向右作正方形,延长的交x轴于点;…;按照这个规律进行下去,则第n个正方形的边长为________(结果用含正整数n的代数式表示).
【答案】
【分析】根据题中条件,证明所有的直角三角形都相似且确定相似比,再具体算出前几个正方形的边长,然后再找规律得出第个正方形的边长.
【详解】解:点在直线上,点的横坐标为2,
点纵坐标为1.
分别过,作轴的垂线,分别交于,下图只显示一条;
,
类似证明可得,图上所有直角三角形都相似,有
,
不妨设第1个至第个正方形的边长分别用:来表示,通过计算得:
,
,
按照这个规律进行下去,则第n个正方形的边长为,
故答案是:.
【点睛】本题考查了三角形相似,解题的关键是:利用条件及三角形相似,先研究好前面几个正方形的边长,再从中去找计算第个正方形边长的方法与技巧.
9.(2020·山东威海·中考真题)如图,点在的内部,,与互补,若,,则__________.
【答案】
【分析】通过证明△ACO∽△OCB,可得,可求出OC.
【详解】解:∵∠OCA=∠OCB,∠OCA与∠AOB互补,
∴∠OCA+∠AOB=180°,∠OCB+∠AOB=180°,
∵∠OCA+∠COA+∠OAC=180°,∠OCB+∠OBC+∠COB=180°,
∴∠AOB=∠COA+∠OAC,∠AOB=∠OBC+∠COB,
∴∠AOC=∠OBC,∠COB=∠OAC,
∴△ACO∽△OCB,
∴,
∴OC2=2×=3,
∴OC=,
故答案为:.
【点睛】本题考查了相似三角形的判定和性质,证明△ACO∽△OCB是本题的关键.
10.(2020·山东临沂·中考真题)如图,在中,D,E为边的三等分点,,H为与的交点.若,则___________.
【答案】1
【分析】利用平行线分线段成比例得到EF=2,再利用中位线得到DH的长即可.
【详解】解:∵D,E为边的三等分点,,
∴EF:DG:AC=1:2:3
∵AC=6,
∴EF=2,
由中位线定理得到,在△AEF中,DH平行且等于
故答案是:1
【点睛】本题考查了平行线分线段成比例定理的应用和中位线的性质,熟悉平行线之间的性质是解题关键.
三、解答题
11.(2022·山东枣庄·中考真题)已知△ABC中,∠ACB=90°,AC=BC=4cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动,同时动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,设运动的时间为t秒.
(1)如图①,若PQ⊥BC,求t的值;
(2)如图②,将△PQC沿BC翻折至△P′QC,当t为何值时,四边形QPCP′为菱形?
【答案】(1)当t=2时,PQ⊥BC
(2)当t的值为时,四边形QPCP′为菱形
【分析】(1)根据勾股定理求出,根据相似三角形的性质列出比例式,计算即可.
(2)作于,于,证明出为直角三角形,进一步得出和为等腰直角三角形,再证明四边形为矩形,利用勾股定理在、中,结合四边形为菱形,建立等式进行求解.
(1)
解:(1)如图①,
∵∠ACB=90°,AC=BC=4cm,
∴AB==(cm),
由题意得,AP=tcm,BQ=tcm,
则BP=(4﹣t)cm,
∵PQ⊥BC,
∴∠PQB=90°,
∴∠PQB=∠ACB,
∴PQAC,
,
,
∴=,
∴,
解得:t=2,
∴当t=2时,PQ⊥BC.
(2)
解:作于,于,如图,
,,
,,
为直角三角形,
,
和为等腰直角三角形,
,,
,
四边形为矩形,
,
,
,
在中,,
在中,,
四边形为菱形,
,
,
,(舍去).
的值为.
【点睛】此题是相似形综合题,主要考查的是菱形的性质、等腰直角三角形的性质,线段垂直平分线的性质,用方程的思想解决问题是解本题的关键.
12.(2022·山东菏泽·中考真题)如图,在中,,E是边AC上一点,且,过点A作BE的垂线,交BE的延长线于点D,求证:.
【答案】见解析
【分析】先根据等腰三角形的性质得∠C=∠BEC,又由对顶角相等可证得∠AED=∠C,再由∠D=∠ABC=90°,即可得出结论.
【详解】证明:∵
∴∠C=∠BEC,
∵∠BEC=∠AED,
∴∠AED=∠C,
∵AD⊥BD,
∴∠D=90°,
∵,
∴∠D=∠ABC,
∴.
【点睛】本题考查等腰三角形的性质,相似三角形的判定,熟练掌握等腰三角形的性质和相似三角形的判定定理是解题的关键.
13.(2020·山东济南·中考真题)在等腰△ABC中,AC=BC,是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.
(1)当∠CAB=45°时.
①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是 .线段BE与线段CF的数量关系是 ;
②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;
学生经过讨论,探究出以下解决问题的思路,仅供大家参考:
思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;
思路二:取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.
(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.
【答案】(1)①,;②仍然成立,证明见解析;(2),理由见解析.
【分析】(1)①如图1中,连接BE,设DE交AB于T.首先证明再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.证明(SAS),可得结论.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°得到,连接DT,GT,BG.证明四边形BEGT是平行四边形,四边形DGBT是平行四边形,可得结论.
(2)结论:BE=.如图3中,取AB的中点T,连接CT,FT.证明,可得结论.
【详解】解:(1)①如图1中,连接BE,设DE交AB于T.
∵CA=CB,∠CAB=45°,
∴∠CAB=∠ABC=45°,
∴∠ACB=90°,
∵∠ADE=∠ACB=45°,∠DAE=90°,
∴∠ADE=∠AED=45°,
∴AD=AE,
∴AT⊥DE,DT=ET,
∴AB垂直平分DE,
∴BD=BE,
∵∠BCD=90°,DF=FB,
∴CF=BD,
∴CF=BE.
故答案为:∠EAB=∠ABC,CF=BE.
②结论不变.
解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.
∵∠ACB=90°,CA=CB,AM=BM,
∴CM⊥AB,CM=BM=AM,
由①得:
设AD=AE=y.FM=x,DM=a,
点F是BD的中点,
则DF=FB=a+x,
∵AM=BM,
∴y+a=a+2x,
∴y=2x,即AD=2FM,
∵AM=BM,EN=BN,
∴AE=2MN,MN∥AE,
∴MN=FM,∠BMN=∠EAB=90°,
∴∠CMF=∠BMN=90°,
∴(SAS),
∴CF=BN,
∵BE=2BN,
∴CF=BE.
解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到,连接DT,GT,BG.
∵AD=AE,∠EAD=90°,EG=DG,
∴AG⊥DE,∠EAG=∠DAG=45°,AG=DG=EG,
∵∠CAB=45°,
∴∠CAG=90°,
∴AC⊥AG,
∴AC∥DE,
∵∠ACB=∠CBT=90°,
∴AC∥BT∥,
∵AG=BT,
∴DG=BT=EG,
∴四边形BEGT是平行四边形,四边形DGBT是平行四边形,
∴BD与GT互相平分,
∵点F是BD的中点,
∴BD与GT交于点F,
∴GF=FT,
由旋转可得;
是等腰直角三角形,
∴CF=FG=FT,
∴CF=BE.
(2)结论:BE=.
理由:如图3中,取AB的中点T,连接CT,FT.
∵CA=CB,
∴∠CAB=∠CBA=30°,∠ACB=120°,
∵AT=TB,
∴CT⊥AB,
∴AT=,
∴AB=,
∵DF=FB,AT=TB,
∴TF∥AD,AD=2FT,
∴∠FTB=∠CAB=30°,
∵∠CTB=∠DAE=90°,
∴∠CTF=∠BAE=60°,
∵∠ADE=∠ACB=60°,
∴AE=AD=FT,
∴,
∴,
∴,
∴.
【点睛】本题属于相似形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,锐角三角函数的应用,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.
14.(2020·山东济宁·中考真题)如图,在△ABC中,AB=AC,点P在BC上.
(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)
(2)在(1)的条件下,若∠APC=2∠ABC,求证:PD//AB.
【答案】(1)见解析;(2)见解析
【分析】(1)根据相似三角形的性质可得∠CPD=∠BAP,故作∠CPD=∠BAP,∠CPD与AC的交点为D即可;
(2)利用外角的性质以及(1)中∠CPD=∠BAP可得∠CPD =∠ABC,再根据平行线的判定即可.
【详解】解:(1)∵△PCD∽△ABP,
∴∠CPD=∠BAP,
故作∠CPD=∠BAP即可,
如图,即为所作图形,
(2)∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,
∴∠BAP =∠ABC,
∴∠BAP=∠CPD=∠ABC,
即∠CPD =∠ABC,
∴PD∥AB.
【点睛】本题考查了尺规作图,相似三角形的性质,外角的性质,难度不大,解题的关键是掌握尺规作图的基本作法.
相关试卷
这是一份2020-2022年山东中考数学3年真题汇编 专题24 统计(学生卷+教师卷),文件包含专题24统计-三年2020-2022中考数学真题分项汇编山东专用解析版docx、专题24统计-三年2020-2022中考数学真题分项汇编山东专用原卷版docx等2份试卷配套教学资源,其中试卷共91页, 欢迎下载使用。
这是一份2020-2022年山东中考数学3年真题汇编 专题25 概率(学生卷+教师卷),文件包含专题25概率-三年2020-2022中考数学真题分项汇编山东专用解析版docx、专题25概率-三年2020-2022中考数学真题分项汇编山东专用原卷版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。
这是一份2020-2022年山东中考数学3年真题汇编 专题19 与圆有关的压轴题(学生卷+教师卷),文件包含专题19与圆有关的压轴题-三年2020-2022中考数学真题分项汇编山东专用解析版docx、专题19与圆有关的压轴题-三年2020-2022中考数学真题分项汇编山东专用原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。