终身会员
搜索
    上传资料 赚现金

    2020-2022年山东中考数学3年真题汇编 专题17 与四边形有关的压轴题(学生卷+教师卷)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题17 与四边形有关的压轴题-三年(2020-2022)中考数学真题分项汇编(山东专用)(原卷版).docx
    • 解析
      专题17 与四边形有关的压轴题-三年(2020-2022)中考数学真题分项汇编(山东专用)(解析版).docx
    专题17 与四边形有关的压轴题-三年(2020-2022)中考数学真题分项汇编(山东专用)(原卷版)第1页
    专题17 与四边形有关的压轴题-三年(2020-2022)中考数学真题分项汇编(山东专用)(原卷版)第2页
    专题17 与四边形有关的压轴题-三年(2020-2022)中考数学真题分项汇编(山东专用)(原卷版)第3页
    专题17 与四边形有关的压轴题-三年(2020-2022)中考数学真题分项汇编(山东专用)(解析版)第1页
    专题17 与四边形有关的压轴题-三年(2020-2022)中考数学真题分项汇编(山东专用)(解析版)第2页
    专题17 与四边形有关的压轴题-三年(2020-2022)中考数学真题分项汇编(山东专用)(解析版)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2022年山东中考数学3年真题汇编 专题17 与四边形有关的压轴题(学生卷+教师卷)

    展开

    这是一份2020-2022年山东中考数学3年真题汇编 专题17 与四边形有关的压轴题(学生卷+教师卷),文件包含专题17与四边形有关的压轴题-三年2020-2022中考数学真题分项汇编山东专用解析版docx、专题17与四边形有关的压轴题-三年2020-2022中考数学真题分项汇编山东专用原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。


    专题17 与四边形有关的压轴题
    一、单选题
    1.(2022·山东东营·中考真题)如图,已知菱形的边长为2,对角线相交于点O,点M,N分别是边上的动点,,连接.以下四个结论正确的是(    )

    ①是等边三角形;②的最小值是;③当最小时;④当时,.
    A.①②③ B.①②④ C.①③④ D.①②③④
    【答案】D
    【分析】①依据题意,利用菱形的性质及等边三角形的判定与性质,证出,然后证,AM=AN,即可证出.
    ②当MN最小值时,即AM为最小值,当时,AM值最小,利用勾股定理求出,即可得到MN的值.
    ③当MN最小时,点M、N分别为BC、CD中点,利用三角形中位线定理得到,用勾股定理求出,,而菱形ABCD的面积为:,即可得到答案.
    ④当时,可证,利用相似三角形对应边成比例可得,根据等量代换,最后得到答案.
    【详解】解:如图:在菱形ABCD中,AB=BC=AD=CD,,OA=OC,
    ∵,
    ∴,与为等边三角形,
    又,

    ∴,
    在与中

    ∴,
    ∴AM=AN,
    即为等边三角形,
    故①正确;
    ∵,
    当MN最小值时,即AM为最小值,当时,AM值最小,
    ∵,

    即,
    故②正确;
    当MN最小时,点M、N分别为BC、CD中点,
    ∴,
    ∴,
    在中,

    ∴,
    而菱形ABCD的面积为:,
    ∴,
    故③正确,
    当时,





    故④正确;
    故选:D.

    【点睛】此题考查了菱形的性质与面积,等边三角形的判定与性质,全等三角形的判定,勾股定理,三角形中位线定理等相关内容,熟练掌握菱形的性质是解题关键.
    二、解答题
    2.(2021·山东日照·中考真题)问题背景:
    如图1,在矩形中,,,点是边的中点,过点作交于点.

    实验探究:
    (1)在一次数学活动中,小王同学将图1中的绕点按逆时针方向旋转,如图2所示,得到结论:①_____;②直线与所夹锐角的度数为______.
    (2)小王同学继续将绕点按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.
    拓展延伸:
    在以上探究中,当旋转至、、三点共线时,则的面积为______.
    【答案】(1),30°;(2)成立,理由见解析;拓展延伸:或
    【分析】(1)通过证明,可得,,即可求解;
    (2)通过证明,可得,,即可求解;
    拓展延伸:分两种情况讨论,先求出,的长,即可求解.
    【详解】解:(1)如图1,,,,

    如图2,设与交于点,与交于点,

    绕点按逆时针方向旋转,


    ,,
    又,

    直线与所夹锐角的度数为,
    故答案为:,;
    (2)结论仍然成立,
    理由如下:如图3,设与交于点,与交于点,

    将绕点按逆时针方向旋转,

    又,

    ,,
    又,

    直线与所夹锐角的度数为.
    拓展延伸:如图4,当点在的上方时,过点作于,

    ,,点是边的中点,,
    ,,,
    ,,

    、、三点共线,




    由(2)可得:,


    的面积;
    如图5,当点在的下方时,过点作,交的延长线于,

    同理可求:的面积;
    故答案为:或.
    【点睛】本题是几何变换综合题,考查了矩形的性质,相似三角形的判定和性质,直角三角形的性质,旋转的性质等知识,利用分类讨论思想解决问题是解题的关键.
    3.(2021·山东淄博·中考真题)已知:在正方形的边上任取一点,连接,一条与垂直的直线(垂足为点)沿方向,从点开始向下平移,交边于点.

    (1)当直线经过正方形的顶点时,如图1所示.求证:;
    (2)当直线经过的中点时,与对角线交于点,连接,如图2所示.求的度数;
    (3)直线继续向下平移,当点恰好落在对角线上时,交边于点,如图3所示.设,求与之间的关系式.
    【答案】(1)见详解;(2);(3)
    【分析】(1)由题意易得,进而可得,则有,然后问题可求证;
    (2)连接AQ,过点Q作QM⊥AD于点M,并延长MQ,交BC于点N,由题意易得AQ=FQ,∠ADB=45°,则有QM=MD,进而可得证,然后可得,则问题可求解;
    (3)过点D作DH∥EG,交AB于点H,由题意易证四边形HEGD是平行四边形,则有,进而可得,然后可得,则问题可求解.
    【详解】(1)证明:∵四边形是正方形,
    ∴,
    ∵AF⊥ED,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴;
    (2)解:连接AQ,过点Q作QM⊥AD于点M,并延长MQ,交BC于点N,如图所示:

    ∵点P是AF的中点,AF⊥EQ,
    ∴,
    ∵四边形是正方形,
    ∴,
    ∴四边形MNCD是矩形,△MDQ是等腰直角三角形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,即,
    ∴是等腰直角三角形,
    ∴;
    (3)过点D作DH∥EG,交AB于点H,如图所示:

    ∴四边形HEGD是平行四边形,
    ∴,
    ∵AF⊥EG,
    ∴AF⊥HD,
    由(1)中结论可得,
    ∵,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴与之间的关系式为.
    【点睛】本题主要考查正方形的性质、相似三角形的性质与判定、函数及等腰直角三角形的性质与判定,熟练掌握正方形的性质、相似三角形的性质与判定、函数及等腰直角三角形的性质与判定是解题的关键.
    4.(2021·山东枣庄·中考真题)如图1,对角线互相垂直的四边形叫做垂美四边形.
    (1)概念理解:如图2,在四边形中,,,问四边形是垂美四边形吗?请说明理由;
    (2)性质探究:如图1,垂美四边形的对角线,交于点.猜想:与有什么关系?并证明你的猜想.
    (3)解决问题:如图3,分别以的直角边和斜边为边向外作正方形和正方形,连结,,.已知,,求的长.

    【答案】(1)四边形是垂美四边形,理由见解析;(2),证明见解析;(3).
    【分析】(1)连接,先根据线段垂直平分线的判定定理可证直线是线段的垂直平分线,再根据垂美四边形的定义即可得证;
    (2)先根据垂美四边形的定义可得,再利用勾股定理解答即可;
    (3)设分别交于点,交于点,连接,先证明,得到,再根据角的和差可证,即,从而可得四边形是垂美四边形,然后结合(2)的结论、利用勾股定理进行计算即可得.
    【详解】证明:(1)四边形是垂美四边形,理由如下:
    如图,连接,

    ∵,
    ∴点在线段的垂直平分线上,
    ∵,
    ∴点在线段的垂直平分线上,
    ∴直线是线段的垂直平分线,即,
    ∴四边形是垂美四边形;
    (2)猜想,证明如下:
    ∵四边形是垂美四边形,
    ∴,
    ∴,
    由勾股定理得:,

    ∴;
    (3)如图,设分别交于点,交于点,连接,

    ∵四边形和四边形都是正方形,
    ∴,
    ∴,即,
    在和中,,
    ∴,
    ∴,
    又∵,,
    ∴,
    ∴,即,
    ∴四边形是垂美四边形,
    由(2)得:,
    ∵是的斜边,且,,
    ∴,,
    在中,,
    在中,,
    ∴,
    解得或(不符题意,舍去),
    故的长为.
    【点睛】本题考查了正方形的性质、全等三角形的判定定理与性质、线段垂直平分线的判定、勾股定理等知识点,正确理解垂美四边形的定义、灵活运用勾股定理是解题关键.
    5.(2021·山东菏泽·中考真题)在矩形中,,点,分别是边、上的动点,且,连接,将矩形沿折叠,点落在点处,点落在点处.

    (1)如图1,当与线段交于点时,求证:;
    (2)如图2,当点在线段的延长线上时,交于点,求证:点在线段的垂直平分线上;
    (3)当时,在点由点移动到中点的过程中,计算出点运动的路线长.
    【答案】(1)见解析;(2)见解析;(3).
    【分析】(1)分别根据平行线的性质及折叠的性质即可证得∠DEF=∠EFB,∠DEF=∠HEF,由此等量代换可得∠HEF=∠EFB,进而可得PE=PF;
    (2)连接PM,ME,MF,先证RtPHM≌RtPBM(HL),可得∠EPM=∠FPM,再证EPM≌FPM(SAS),由此即可得证;
    (3)连接AC,交EF于点O,连接OG,先证明EAO≌FCO(AAS),由此可得OC=AC=5,进而根据折叠可得OG=OC=5,由此得到点G的运动轨迹为圆弧,再分别找到点G的起始点和终点便能求得答案.
    【详解】(1)证明:∵在矩形ABCD中,
    ∴ADBC,AB=CD;
    ∴∠DEF=∠EFB,
    ∵折叠,
    ∴∠DEF=∠HEF,
    ∴∠HEF=∠EFB,
    ∴PE=PF;
    (2)证明:连接PM,ME,MF,


    ∵在矩形ABCD中,
    ∴AD=BC,∠D=∠ABC=∠PBA=90°,
    又∵AE=CF,
    ∴AD-AE=BC-CF,
    即:DE=BF,
    ∵折叠,
    ∴DE=HE,∠D=∠EHM=∠PHM=90°,
    ∴BF=HE,∠PBA=∠PHM=90°,
    又∵由(1)得:PE=PF,
    ∴PE-HE=PF-BF,
    即:PH=PB,
    在RtPHM与RtPBM中,

    ∴RtPHM≌RtPBM(HL),
    ∴∠EPM=∠FPM,
    在EPM与FPM中,

    ∴EPM≌FPM(SAS),
    ∴ME=MF,
    ∴点M在线段EF的垂直平分线上;
    (3)解:如图,连接AC,交EF于点O,连接OG,

    ∵AB=CD=5,,
    ∴BC=,
    ∴在RtABC中,AC==,
    ∵ADBC,
    ∴∠EAO=∠FCO,
    在EAO与FCO中,

    ∴EAO≌FCO(AAS),
    ∴OA=OC=AC=5,
    又∵折叠,
    ∴OG=OC=5,
    当点E与点A重合时,如图所示,此时点F,点G均与点C重合,

    当点E与AD的中点重合时,如图所示,此时点G与点B重合,

    ∵O为定点,OG=5为定值,
    ∴点G的运动路线为以点O为圆心,5为半径的圆弧,且圆心角为∠BOC,
    在RtABC中,tan∠BAC==,
    ∴∠BAC=60°,
    ∵OA=OB=OC=OG,
    ∴点A、B、C、G在以点O为圆心,5为半径的圆上,
    ∴∠BOC=2∠BAC=120°,
    ∴的长为=,
    ∴点运动的路线长为.
    【点睛】本题考查了矩形的性质、折叠的性质、全等三角形的判定及性质、圆的相关概念及性质,弧长公式的应用,第(3)问能够发现OG=5是解决本题的关键.
    6.(2021·山东临沂·中考真题)如图,已知正方形ABCD,点E是BC边上一点,将△ABE沿直线AE折叠,点B落在F处,连接BF并延长,与∠DAF的平分线相交于点H,与AE,CD分别相交于点G,M,连接HC
    (1)求证:AG=GH;
    (2)若AB=3,BE=1,求点D到直线BH的距离;
    (3)当点E在BC边上(端点除外)运动时,∠BHC的大小是否变化?为什么?

    【答案】(1)见解析;(2);(3)不变,理由见解析
    【分析】(1)根据折叠的性质得到AG⊥BF,结合角平分线的定义得到∠FAH=∠FAD,从而推出∠EAH=(∠BAF+∠FAD)=45°,可得AG=GH;
    (2)连接DH,DF,交AH于点N,易得等腰直角△DHF,推出DH的长即为点D到BH的距离,根据DH=FH,转化为求FH的长,结合(1)中条件,证明△ABG∽△AEB,得到,从而求出GF和GH,可得DH;
    (3)作正方形ABCD的外接圆,判断出点H在圆上,结合圆周角定理求出∠BHC即可.
    【详解】解:(1)∵△ABE沿直线AE折叠,点B落在点F处,
    ∴∠BAG=∠GAF=BAF,B、F关于AE对称,
    ∴AG⊥BF,
    ∴∠AGF=90°,
    ∵AH平分∠DAF,
    ∴∠FAH=∠FAD,
    ∴∠EAH=∠GAF+∠FAH
    =∠BAF+∠FAD
    =(∠BAF+∠FAD)
    =∠BAD,
    ∵四边形ABCD是正方形,
    ∴∠BAD=90°,
    ∴∠EAH=∠BAD=45°,
    ∴∠GHA=45°,
    ∴GA=GH;
    (2)连接DH,DF,交AH于点N,
    由(1)可知:AF=AD,∠FAH=∠DAH,
    ∴AH⊥DF,FN=DN,
    ∴DH=HF,∠FNH=∠DNH=90°,
    又∵∠GHA=45°,
    ∴∠FHN=45°=∠NDH=∠DHN,
    ∴∠DHF=90°,
    ∴DH的长即为点D到直线BH的距离,
    由(1)知:在Rt△ABE中,,
    ∴,
    ∵∠BAE+∠AEB=∠BAE+∠ABG=90°,
    ∴∠AEB=∠ABG,
    ∴△ABG∽△AEB,
    ∴,
    ∴,

    由(1)知:GF=BG,AG=GH,
    ∴,,
    ∴DH=FH=GH-GF==,
    即点D到直线BH的长为;
    (3)作正方形ABCD的外接圆,对角线BD为圆的直径,
    ∵∠BHD=90°,
    ∴H在圆周上,
    ∴∠BHC=∠BDC,
    ∵四边形ABCD是正方形,
    ∴∠BCD=90°,BC=CD,
    ∴∠BDC=∠DBC=45°,
    ∴∠BHC=45°,
    ∴当点E在BC边上(除端点外)运动时,∠BHC的大小不变.

    【点睛】本题是四边形综合题,考查了折叠的性质,相似三角形的判定和性质,圆周角定理,等腰三角形的判定和性质,侧重对学生能力的考查:几何变换的能力,转化能力以及步骤书写能力,具有一定艺术性.
    7.(2020·山东济南·中考真题)在等腰△ABC中,AC=BC,是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.
    (1)当∠CAB=45°时.
    ①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是   .线段BE与线段CF的数量关系是   ;
    ②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;
    学生经过讨论,探究出以下解决问题的思路,仅供大家参考:
    思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;
    思路二:取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.
    (2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.

    【答案】(1)①,;②仍然成立,证明见解析;(2),理由见解析.
    【分析】(1)①如图1中,连接BE,设DE交AB于T.首先证明再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.证明(SAS),可得结论.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°得到,连接DT,GT,BG.证明四边形BEGT是平行四边形,四边形DGBT是平行四边形,可得结论.
    (2)结论:BE=.如图3中,取AB的中点T,连接CT,FT.证明,可得结论.
    【详解】解:(1)①如图1中,连接BE,设DE交AB于T.

    ∵CA=CB,∠CAB=45°,
    ∴∠CAB=∠ABC=45°,
    ∴∠ACB=90°,
    ∵∠ADE=∠ACB=45°,∠DAE=90°,
    ∴∠ADE=∠AED=45°,
    ∴AD=AE,


    ∴AT⊥DE,DT=ET,
    ∴AB垂直平分DE,
    ∴BD=BE,
    ∵∠BCD=90°,DF=FB,
    ∴CF=BD,
    ∴CF=BE.
    故答案为:∠EAB=∠ABC,CF=BE.
    ②结论不变.
    解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.

    ∵∠ACB=90°,CA=CB,AM=BM,
    ∴CM⊥AB,CM=BM=AM,
    由①得:
    设AD=AE=y.FM=x,DM=a,
    点F是BD的中点,
    则DF=FB=a+x,
    ∵AM=BM,
    ∴y+a=a+2x,
    ∴y=2x,即AD=2FM,
    ∵AM=BM,EN=BN,
    ∴AE=2MN,MN∥AE,
    ∴MN=FM,∠BMN=∠EAB=90°,
    ∴∠CMF=∠BMN=90°,
    ∴(SAS),
    ∴CF=BN,
    ∵BE=2BN,
    ∴CF=BE.
    解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到,连接DT,GT,BG.

    ∵AD=AE,∠EAD=90°,EG=DG,
    ∴AG⊥DE,∠EAG=∠DAG=45°,AG=DG=EG,
    ∵∠CAB=45°,
    ∴∠CAG=90°,
    ∴AC⊥AG,
    ∴AC∥DE,
    ∵∠ACB=∠CBT=90°,

    ∴AC∥BT∥,
    ∵AG=BT,
    ∴DG=BT=EG,
    ∴四边形BEGT是平行四边形,四边形DGBT是平行四边形,
    ∴BD与GT互相平分,
    ∵点F是BD的中点,
    ∴BD与GT交于点F,
    ∴GF=FT,
    由旋转可得;
    是等腰直角三角形,
    ∴CF=FG=FT,
    ∴CF=BE.
    (2)结论:BE=.
    理由:如图3中,取AB的中点T,连接CT,FT.

    ∵CA=CB,
    ∴∠CAB=∠CBA=30°,∠ACB=120°,
    ∵AT=TB,
    ∴CT⊥AB,

    ∴AT=,
    ∴AB=,
    ∵DF=FB,AT=TB,
    ∴TF∥AD,AD=2FT,
    ∴∠FTB=∠CAB=30°,
    ∵∠CTB=∠DAE=90°,
    ∴∠CTF=∠BAE=60°,
    ∵∠ADE=∠ACB=60°,

    ∴AE=AD=FT,
    ∴,
    ∴,
    ∴,
    ∴.
    【点睛】本题属于相似形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,锐角三角函数的应用,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.
    8.(2020·山东青岛·中考真题)已知:如图,在四边形和中,,,点在上,,,,延长交于点,点从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为,过点作于点,交于点.设运动时间为.

    解答下列问题:     
    (1)当为何值时,点在线段的垂直平分线上?
    (2)连接,作于点,当四边形为矩形时,求的值;
    (3)连接,,设四边形的面积为,求与的函数关系式;
    (4)点在运动过程中,是否存在某一时刻,使点在的平分线上?若存在,求出的值;若不存在,请说明理由.
    【答案】(1) t=;(2)t=3;(3)S与t的函数关系式为;(4)存在,t=,
    【分析】(1)要使点M在线段CQ的垂直平分线上,只需证CM=MQ即可;
    (2)由矩形性质得PH=QN,由已知和AP=2t,MQ=t,解直角三角形推导出PH、QN,进而得关于t的方程,解之即可;
    (3)分别用t表示出梯形GHFM的面积、△QHF的面积、△CMQ的面积,即可得到S与t的函数关系式;
    (4)延长AC交EF与T,证得AT⊥EF,要使点P在∠AFE的平分线上,只需PT=PH,分别用t表示PT、PH,代入得关于t的方程,解之即可.
    【详解】(1)当=时,点在线段的垂直平分线上,理由为:
    由题意,CE=2,CM∥BF,
    ∴即:,
    解得:CM=,
    要使点在线段的垂直平分线上,
    只需QM=CM=,
    ∴t=;
    (2)如图,∵,,,
    ∴AC=10,EF=10,sin∠PAH=,cos∠PAH=,sin∠EFB=,
    在Rt△APH中,AP=2t,
    ∴PH=AP·sin∠PAH=,
    在Rt△ECM中,CE=2,CM=,由勾股定理得:EM=,
    在Rt△QNF中,QF=10-t-=,
    ∴QN=QF·sin∠EFB=()×=,
    四边形为矩形,
    ∴PH=QN,
    ∴=,
    解得:t=3;

    (3)如图,过Q作QN⊥AF于N,
    由(2)中知QN=,AH=AP·cos∠PAH=,
    ∴BH=GC=8-,
    ∴GM=GC+CM=,HF=HB+BF=,

    =
    =
    =,
    ∴S与t的函数关系式为:;

    (4)存在,t=.
    证明:如图,延长AC交EF于T,
    ∵AB=BF,BC=BF, ,
    ∴△ABC≌△EBF,
    ∴∠BAC=∠BEF,
    ∵∠EFB+∠BEF=90º,
    ∴∠BAC+∠EFB=90º,
    ∴∠ATE=90º即PT⊥EF,
    要使点在的平分线上,只需PH=PT,
    在Rt△ECM中,CE=2,sin∠BEF=,
    CT=CE·sin∠BEF =,
    PT=10+-2t=,又PH=,
    =,
    解得:t=.

    【点睛】本题属于四边形的综合题,考查了解直角三角形、锐角三角函数、垂直平分线、角平分线、矩形的性质、全等三角形的判定与性质、多边形的面积等知识、解答的关键是认真审题,分析相关知识,利用参数构建方程解决问题,是中考常考题型.
    9.(2020·山东菏泽·中考真题)如图1,四边形的对角线,相交于点,,.

           图1                  图2          
    (1)过点作交于点,求证:;
    (2)如图2,将沿翻折得到.
    ①求证:;
    ②若,求证:.
    【答案】(1)见解析;(2)①见解析;②见解析.
    【分析】(1)连接CE,根据全等证得AE=CD,进而AECD为平行四边形,由进行等边代换,即可得到;
    (2)①过A作AE∥CD交BD于E,交BC于F,连接CE,,得,利用翻折的性质得到,即可证明;②证△BEF≌△CDE,从而得,进而得∠CED=∠BCD,且,得到△BCD∽△CDE,得,即可证明.
    【详解】解:(1)连接CE,

    ∵,
    ∴,
    ∵,,,
    ∴△OAE≌△OCD,
    ∴AE=CD,
    ∴四边形AECD为平行四边形,
    ∴AE=CD,OE=OD,
    ∵,
    ∴CD=BE,
    ∴;
    (2)①过A作AE∥CD交BD于E,交BC于F,连接CE,

    由(1)得,,
    ∴,
    由翻折的性质得,
    ∴,
    ∴,
    ∴;
    ②∵,,
    ∴四边形为平行四边形,
    ∴,,
    ∴,
    ∵,
    ∴EF=DE,
    ∵四边形AECD是平行四边形,
    ∴CD=AE=BE,
    ∵AF∥CD,
    ∴,
    ∵EF=DE,CD=BE,,
    ∴△BEF≌△CDE(SAS),
    ∴,
    ∵,
    ∴∠CED=∠BCD,
    又∵∠BDC=∠CDE,
    ∴△BCD∽△CDE,
    ∴,即,
    ∵DE=2OD,
    ∴.
    【点睛】本题考查相似三角形的判定与性质以及平行四边形的判定和性质,考查等腰三角形的判定与性质综合,熟练掌握各图形的性质并灵活运用是解题的关键.
    10.(2020·山东临沂·中考真题)如图,菱形的边长为1,,点E是边上任意一点(端点除外),线段的垂直平分线交,分别于点F,G,,的中点分别为M,N.

    (1)求证:;
    (2)求的最小值;
    (3)当点E在上运动时,的大小是否变化?为什么?
    【答案】(1)见解析;(2);(3)不变,理由见解析.
    【分析】(1)连接CF,根据垂直平分线的性质和菱形的对称性得到CF=EF和CF=AF即可得证;
    (2)连接AC,根据菱形对称性得到AF+CF最小值为AC,再根据中位线的性质得到MN+NG的最小值为AC的一半,即可求解;
    (3)延长EF,交DC于H,利用外角的性质证明∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,再由AF=CF=EF,得到∠AEF=∠EAF,∠FEC=∠FCE,从而推断出∠AFD=∠FAE+∠ABF=∠FAE+∠CEF,从而可求出∠ABF=∠CEF=30°,即可证明.
    【详解】解:(1)连接CF,
    ∵FG垂直平分CE,
    ∴CF=EF,
    ∵四边形ABCD为菱形,
    ∴A和C关于对角线BD对称,
    ∴CF=AF,
    ∴AF=EF;

    (2)连接AC,
    ∵M和N分别是AE和EF的中点,点G为CE中点,
    ∴MN=AF,NG=CF,即MN+NG=(AF+CF),
    当点F与菱形ABCD对角线交点O重合时,
    AF+CF最小,即此时MN+NG最小,
    ∵菱形ABCD边长为1,∠ABC=60°,
    ∴△ABC为等边三角形,AC=AB=1,
    即MN+NG的最小值为;

    (3)不变,理由是:
    延长EF,交DC于H,
    ∵∠CFH=∠FCE+∠FEC,∠AFH=∠FAE+∠FEA,
    ∴∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,
    ∵点F在菱形ABCD对角线BD上,根据菱形的对称性可得:
    ∠AFD=∠CFD=∠AFC,
    ∵AF=CF=EF,
    ∴∠AEF=∠EAF,∠FEC=∠FCE,
    ∴∠AFD=∠FAE+∠ABF=∠FAE+∠CEF,
    ∴∠ABF=∠CEF,
    ∵∠ABC=60°,
    ∴∠ABF=∠CEF=30°,为定值.

    【点睛】本题考查了菱形的性质,最短路径,等边三角形的判定和性质,中位线定理,难度一般,题中线段较多,需要理清线段之间的关系.
    11.(2020·山东济宁·中考真题)如图,在菱形ABCD中,AB=AC,点E、F、G分别在边BC、CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).
    (1)求证:△AEH≌△AGH;
    (2)当AB=12,BE=4时:
    ①求△DGH周长的最小值;
    ②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出的值;若不存在,请说明理由.

    【答案】(1)见解析;(2)①;②存在,或
    【分析】(1)证明△ABE≌△ACG得到AE=AG,再结合角平分线,即可利用SAS证明△AEH≌△AGH;
    (2)①根据题意可得点E和点G关于AF对称,从而连接ED,与AF交于点H,连接HG,得到△DGH周长最小时即为DE+DG,构造三角形DCM进行求解即可;
    ②分当OH与AE相交时,当OH与CE相交时两种情况分别讨论,结合中位线,三角形面积进行求解即可.
    【详解】解:(1)∵四边形ABCD为菱形,
    ∴AB=BC,
    ∵AB=AC,
    ∴△ABC是等边三角形 ,
    ∴∠B=∠ACB=∠ACD=60°,
    ∵BE=CG,AB=AC,
    ∴△ABE≌△ACG,
    ∴AE=AG,
    ∵AF平分∠EAG,
    ∴∠EAH=∠GAH,
    ∵AH=AH,
    ∴△AEH≌△AGH;
    (2)①如图,连接ED,与AF交于点H,连接HG,
    ∵点H在AF上,AF平分∠EAG,且AE=AG,
    ∴点E和点G关于AF对称,
    ∴此时△DGH的周长最小,
    过点D作DM⊥BC,交BC的延长线于点M,
    由(1)得:∠BCD=∠ACB+∠ACD=120°,
    ∴∠DCM=60°,∠CDM=30°,
    ∴CM=CD=6,
    ∴DM=,
    ∵AB=12=BC,BE=4,
    ∴EC=DG=8,EM=EC+CM=14,
    ∴DE==DH+EH=DH+HG,
    ∴DH+HG+DG=
    ∴△DGH周长的最小值为;

    ②当OH与AE相交时,如图,AE与OH交于点N,
    可知S△AON:S四边形HNEF=1:3,
    即S△AON:S△AEC=1:4,
    ∵O是AC中点,
    ∴N为AE中点,此时ON∥EC,
    ∴,

    当OH与EC相交时,如图,EC与OH交于点N,
    同理S△NOC:S四边形ONEA=1:3,
    ∴S△NOC:S△AEC=1:4,
    ∵O为AC中点,
    ∴N为EC中点,则ON∥AE,
    ∴,
    ∵BE=4,AB=12,
    ∴EC=8,EN=4,
    过点G作GP⊥BC,交BNC延长线于点P,
    ∵∠BCD=120°,
    ∴∠GCP=60°,∠CGP=30°,
    ∴CG=2CP,
    ∵CG=BE=4,
    ∴CP=2,GP=,
    ∵AE=AG,AF=AF,∠EAF=∠GAF,
    ∴△AEF≌△AGF,
    ∴EF=FG,
    设EF=FG=x,则FC=8-x,FP=10-x,
    在△FGP中,,
    解得:x=,
    ∴EF=,
    ∴,

    综上:存在直线OH,的值为或.
    【点睛】本题考查了菱形的性质,全等三角形的判定和性质,直角三角形的性质,中位线,最短路径问题,知识点较多,难度较大,解题时要注意分情况讨论.
    12.(2020·山东德州·中考真题)问题探究:
    小红遇到这样一个问题:如图1,中,,,AD是中线,求AD的取值范围.她的做法是:延长AD到E,使,连接BE,证明,经过推理和计算使问题得到解决.
    请回答:(1)小红证明的判定定理是:__________________________________________;
    (2)AD的取值范围是________________________;
    方法运用:
    (3)如图2,AD是的中线,在AD上取一点F,连结BF并延长交AC于点E,使,求证:.
    (4)如图3,在矩形ABCD中,,在BD上取一点F,以BF为斜边作,且,点G是DF的中点,连接EG,CG,求证:.

    【答案】(1);(2);(3)见解析;(4)见解析
    【分析】(1)利用三角形的中线与辅助线条件,直接证明,从而可得证明全等的依据;
    (2)利用全等三角形的性质得到求解的范围,从而可得答案;
    (3)延长至点,使,证明,利用全等三角形的性质与,证明,得到,从而可得答案;
    (4)延长至点使,连接、、,证明,得到,利用锐角三角函数证明,再证明,利用相似三角形的性质可得是直角三角形,从而可得答案.
    【详解】解:(1)如图,AD是中线,

    在与中,



    故答案为:
    (2)





    故答案为:
    (3)证明:延长至点,使,
    ∵是的中线

    在和中

    ∴,
    ∴,
    又∵,
    ∵,
    ∴,
    又∵,

    ∴,
    又∵


    (4)证明:延长至点使,连接、、
    ∵G为的中点

    在和中



    在中,∵,

    又矩形中,
    ∴,
    ∴,
    ∴,
    又,
    ∴,
    ∴,
    又为的外角,
    ∴,
    即,
    ∵,
    ∴,
    ∴,
    即,
    在和中,

    ∴,
    又,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴是直角三角形,
    ∵G为的中点,
    ∴,
    即.

    【点睛】本题考查的是倍长中线法证明三角形全等,同时考查全等三角形的性质,等腰三角形的判定与性质,直角三角形的性质,矩形的性质,三角形相似的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键.

    相关试卷

    2020-2022年四川中考数学3年真题汇编 专题16 四边形压轴题(学生卷+教师卷):

    这是一份2020-2022年四川中考数学3年真题汇编 专题16 四边形压轴题(学生卷+教师卷),文件包含专题16四边形压轴题-三年2020-2022中考数学真题分项汇编四川专用解析版docx、专题16四边形压轴题-三年2020-2022中考数学真题分项汇编四川专用原卷版docx等2份试卷配套教学资源,其中试卷共94页, 欢迎下载使用。

    2020-2022年山东中考数学3年真题汇编 专题19 与圆有关的压轴题(学生卷+教师卷):

    这是一份2020-2022年山东中考数学3年真题汇编 专题19 与圆有关的压轴题(学生卷+教师卷),文件包含专题19与圆有关的压轴题-三年2020-2022中考数学真题分项汇编山东专用解析版docx、专题19与圆有关的压轴题-三年2020-2022中考数学真题分项汇编山东专用原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    2020-2022年湖南中考数学3年真题汇编 专题24 与圆有关的压轴题(学生卷+教师卷):

    这是一份2020-2022年湖南中考数学3年真题汇编 专题24 与圆有关的压轴题(学生卷+教师卷),文件包含专题24与圆有关的压轴题-三年2020-2022中考数学真题分项汇编全国通用解析版docx、专题24与圆有关的压轴题-三年2020-2022中考数学真题分项汇编全国通用原卷版docx等2份试卷配套教学资源,其中试卷共147页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2020-2022年山东中考数学3年真题汇编 专题17 与四边形有关的压轴题(学生卷+教师卷)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map