


辽宁省鞍山市铁西区2022-2023学年九年级上学期期中数学试题(含答案)
展开
这是一份辽宁省鞍山市铁西区2022-2023学年九年级上学期期中数学试题(含答案),共15页。试卷主要包含了选择题,填空题(3分分,解答题等内容,欢迎下载使用。
九年级数学试卷(十一月)(考试时间共120分钟,试卷满分150分)温馨提示:请每一位考生把所有的答案都答在答题卡上,否则不给分,答题要求见答题卡。一、选择题:(3分*8=24分 )1.若关于x的一元二次方程有两个实数根,则k的取值范围是( )A. B. C.且 D.且2.在平面直角坐标系中,将N(—1,—2)绕原点旋转,得到的对应点的坐标( )A. (1,—2) B. (—1,2) C. (—1,—2) D. (1,2)3.新冠肺炎具有人传人的特性,若一人携带病毒未进行有效隔离,经过两轮传染后共有289人患新冠肺炎,设每轮传染中平均每个人传染了x人,则根据题意可列出方程( )A. B.C. D.4.如图,在Rt△ABC中,,,将△ABC绕点A顺时针旋转得到△AB'C,连接CC',则CC'的长为( )A. 2 B. 4 C. 4 D. 3 5.对于抛物线,下列的说法错误的是( )A. 抛物线的开口向上 B. 抛物线的顶点坐标是(—1,—5)C. 当时,y随x的减小而增大 D. 当时,y随x的增大而增大6如图在△ABC中,D、E分别是边AB、BC上的点,且,若则的值为( )A. B. C. D.7.如图,在网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则sin∠BAC的值是( )A. B. C. D.8.如图是二次函数的图象,其对称轴为,下列结论:①;②2a+b=0;③;④,其中正确结论的个数是( )A. 1个 B. 2个 C. 3个 D. 4个二、填空题(3分分9.若是关于x的方程的根,则___________。10.。 在△ABC中,若,∠A,∠B都是锐角,则∠C的度数是___________。11.已知点(—4,)、(—1,)、(,y3)都在函数的图象上,则y1、、的大小关系为___________。(用小于号连接)12如图,在平面直角坐标系中,已知点E(—4,2),F(—1,—1),以原点O为位似中心,把△EFO缩小到原来的,则点E的对应点的坐标为___________。13.将抛物线向左平移3个单位长度,再向下平移4个单位长度得到的抛物线的顶点坐标为___________。14. 如图,在等边△ABC中,点D,E分别在边BC,AC上,,若则AD的长度为___________。15.已知二次函数,当时,对应的函数值y的范围为___________。16.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H。给出下列结论:①;②;③;④;其中正确的是___________。三、解答题:(2个小题,每题8分,共16分)17.解下列一元二次方程:(1); (2)18.如图,在△ABC中,,于点D且,求BC的长。四、解答题:(2个小题,每题10分,共20分)19.关于x的一元二次方程。(1) 求证:方程总有两个实数根;(2)设α、β是方程的两个实数根,若求k的值。20.为了保障市民出行方便,某市在流经该市的河流上架起一座桥,小明和小颖想通过自己所学的数学知识计算该桥AF的长。如图,该桥两侧河岸平行,他们在河的对岸选定一个目标作为点A,再在河岸的这一边选出点B和点C,分别在AB、AC的延长线上取点D、E,使得。经测量,米,米,且点E到河岸BC的距离为75米。已知于点F,请你根据提供的数据 帮助他们计算桥AF的长度。五、解答题:(2个小题,每题10分,共20分)21.如图,已知抛物线与x轴相交于A、B两点,与y轴相交于点C,连接BC。(1)求,B,C及顶点D的坐标,(2) 求三角形BDC的面积;22如图,点P是菱形ABCD的对角线BD上一点,连结CP并延长,交AD于E,交BA的延长线于点F。(1)求证:。(2)若CF为线段AD的垂直平分线,,求BD的长。六、解答题:(2个小题,每题10分,共20分)23.如图,二次函数的图像与x轴交于A、B两点,与y轴交于C点,点B的坐标为(3,0),点C的坐标为(0,3),连接B、C两点,设直线BC的解析式为y。(1)直接写出使不等式成立的x的取值范围,并求该二次函数的表达式。(2)点P为线段BC上的一点(不与重合),过点P作x轴的垂线与该二次函数的图像相交于点M,与x轴交于点N,请在图像上画出,当时,求点P的坐标; 24.某商场销售一种市场需求较大的健身器材,已知每件产品的进价为40元,每年销售该种产品的总费用(不含进货费用)总计120万元。在销售过程中发现,年销售量y(万件)与销售单价x(元/件)之间存在着一次函数关系,且时,;。(1)求出y与x的解析式(2) 若商场希望该种产品一年的销售利润为55万元,请你为商场定一个销售单价。七、解答题:(1个小题,12分)25. 已知△ABC为直角三角形,点D在直线CB上,以AD为直角边做直角三角形ADE,连接CE。(1)如图1,当时,请直接写出线段BD与线段CE的数量关系与位置关系;(2)如图2,当时,请猜想线段BD与线段CE的数量关系与位置关系,并说明理由;(3)如图3,当点D在射线CB上,且时,连接BE,分别取线段BE,DE的中点M,N,连接MN,CM,CN,若,请直接写出△CMND的面积。八、解答题(1个小题,14分)26. 已知抛物线经过点A(1,0)和点B(—3,0),与y轴交于点C,P为第二象限内抛物线上一点。(1)求抛物线的解析式;(2)如图,线段于点D,求点P的坐标;(3)点E是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△EMB是以BM为腰的等腰直角三角形时,请直接写出所有点M的横坐标。 九年数学质量测试(十一月)参考答案及评分标准一、 选择题1. C 2.D 3.D 4.C 5.C 6.D 7.A 8.C二、填空题(9) (10) (11) (12)(—2,1)或(2,—1) (13) (—1,—3) (14)6 (15) (16) ①②④三、 解答题:(2个小题,每题8分,共16分)17.解:(1)∵_1分∴,_2分则,_3分∴:_4分(2)∴ 1分则,_2分∴或,_3分解得。_4分18.解:∵于点D.∴∴△ABD,△ADC为直角三角形。___________1分∵Rt△ADB中,∴_3分∴(或勾股定理求出)___________4分∵Rt△ADC中,∴。_6分∴。_7分∴。_8分四、 解答题:(2个小题,每题10分,共20分)19.(1)证明:3分∵∴,___________4分∴无论k为何值,方程总有两个实数根:_5分(2) ∵_6分∴8分∵∴∴10分20.如图所示,过E作于G,_1分∵∴,_2分∴∴___________5分∵∴_6分∵∴8分∴,即解得,_9分∴桥AF的长度为100米。___________10分五、解答题:(2个小题,每题10分,共20分)21. 解:(1)当时,∴∴B坐标为(5,0)___________2分当时,∴C坐标(0,—5)___________3分∵∴D坐标(2,—9)_5分C (2)连接OD,作于点E,于点F(虚线)6分∵D坐标(2,—9),B坐标为(5,0),C坐标(0,—5)∴_7分∴=15_10分说明:其他方法同上给分22.证明:(1)∵四边形ABCD是菱形,∴,_1分又∵∴∴,_2分∵。∴∴,_3分∵∴,___________4分 ∴∴∴5分(2) ∵∴∵∴∴_7分∵CF为线段AD的垂直平分线 ∴∵四边形ABCD是菱形∴∴∴∴∵∴∴___________10分六、 解答题:(2个小题,每题10分,共20分)23(1)_1分将点B(3,0),点C(0,3)代入得∴∴抛物线的解析式为 5 分(2)如图,将点B(3,0),点C(0,3)代入得出_6分设∴ 7分∵∴∴9分∵P不与B,C重合,∴P(2,1) ___________10分24.解:(1)将时,代入_1分解得:,_3分∴y与x之间的函数关系式为;_4分(2)由题意得:,_6分整理得: 8分解得:,___________9分答:商场的销售单价是90元或110元。___________10分七、解答题:(共12分)25(1)2分 (2)答: _3分证出___________6分 证出 8分(3)△MND的面积为或 12分①——_4分②过点P作轴于H点——5分##∴∴∵∴∴∴ 6分设∴当得∴C(0,2)∵B(—3,0)C(0,2)∴在Rt△OBC中∵∴在Rt△POH中∴∴∴∵∴∴∴P(3),—2,-1-
相关试卷
这是一份2023-2024学年辽宁省鞍山市铁西区八年级上学期期中数学试题及答案,共22页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份辽宁省鞍山市铁西区2023-—2024学年七年级下学期5月期中数学试题,共4页。
这是一份辽宁省鞍山市铁西区第十二中学2023-2024学年九年级上学期11月期中数学卷,共6页。
