陕西省西安工业大附属中学2021-2022学年中考押题数学预测卷含解析
展开
这是一份陕西省西安工业大附属中学2021-2022学年中考押题数学预测卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列计算正确的是( )
A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2
C.a2•a3=a6 D.﹣3a2+2a2=﹣a2
2.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是( )
A.135° B.120° C.60° D.45°
3.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是( )
A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=4
4.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是( )
A.8 B.10 C.21 D.22
5.已知反比例函数,下列结论不正确的是( )
A.图象经过点(﹣2,1) B.图象在第二、四象限
C.当x<0时,y随着x的增大而增大 D.当x>﹣1时,y>2
6.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能是多边形的是( )
A.圆锥 B.圆柱 C.球 D.正方体
7.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是( )
A. B. C. D.
8.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,O间的距离不可能是( )
A.0 B.0.8 C.2.5 D.3.4
9.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是( )
A. B. C. D.
10.将某不等式组的解集表示在数轴上,下列表示正确的是( )
A. B.
C. D.
11.如图,在矩形ABCD中AB=,BC=1,将矩形ABCD绕顶点B旋转得到矩形A'BC'D,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为( )
A. B. C. D.
12.观察下列图形,则第n个图形中三角形的个数是( )
A.2n+2 B.4n+4 C.4n﹣4 D.4n
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.对角线互相平分且相等的四边形是( )
A.菱形 B.矩形 C.正方形 D.等腰梯形
14.如图,△ABC中,AB=AC,D是AB上的一点,且AD=AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为____.
15.如图是一本折扇,其中平面图是一个扇形,扇面ABDC的宽度AC是管柄长OA的一半,已知OA=30cm,∠AOB=120°,则扇面ABDC的周长为_____cm
16.计算的结果为 .
17.不等式组的解集是__.
18.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__度.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)求发射台与雷达站之间的距离;求这枚火箭从到的平均速度是多少(结果精确到0.01)?
20.(6分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.
求证:BF=BC;若AB=4cm,AD=3cm,求CF的长.
21.(6分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.
22.(8分)抛物线:与轴交于,两点(点在点左侧),抛物线的顶点为.
(1)抛物线的对称轴是直线________;
(2)当时,求抛物线的函数表达式;
(3)在(2)的条件下,直线:经过抛物线的顶点,直线与抛物线有两个公共点,它们的横坐标分别记为,,直线与直线的交点的横坐标记为,若当时,总有,请结合函数的图象,直接写出的取值范围.
23.(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x的取值范围.
24.(10分)某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品的单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.
25.(10分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:.书法比赛,.绘画比赛,.乐器比赛,.象棋比赛,.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:
图1 各项报名人数扇形统计图:
图2 各项报名人数条形统计图:
根据以上信息解答下列问题:
(1)学生报名总人数为 人;
(2)如图1项目D所在扇形的圆心角等于 ;
(3)请将图2的条形统计图补充完整;
(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.
26.(12分)如图,在Rt△ABC中,,点在边上,⊥,点为垂足,,∠DAB=450,tanB=.
(1)求的长;
(2)求的余弦值.
27.(12分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.
(1)求证:方程有两个不相等的实数根;
(2)当方程有一个根为1时,求k的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.
【详解】
故选项A错误,
故选项B错误,
故选项C错误,
故选项D正确,
故选:D.
【点睛】
考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.
2、B
【解析】
易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.
【详解】
∵四边形ABCD是正方形,
∴AB=AD,∠BAF=∠DAF,
∴△ABF≌△ADF,
∴∠AFD=∠AFB,
∵CB=CE,
∴∠CBE=∠CEB,
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,
∴∠CBE=15°,
∵∠ACB=45°,
∴∠AFB=∠ACB+∠CBE=60°.
∴∠AFE=120°.
故选B.
【点睛】
此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.
3、D
【解析】
解:由对称轴x=2可知:b=﹣4,
∴抛物线y=x2﹣4x+c,
令x=﹣1时,y=c+5,
x=3时,y=c﹣3,
关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,
当△=0时,
即c=4,
此时x=2,满足题意.
当△>0时,
(c+5)(c﹣3)≤0,
∴﹣5≤c≤3,
当c=﹣5时,
此时方程为:﹣x2+4x+5=0,
解得:x=﹣1或x=5不满足题意,
当c=3时,
此时方程为:﹣x2+4x﹣3=0,
解得:x=1或x=3此时满足题意,
故﹣5<c≤3或c=4,
故选D.
点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.
4、D
【解析】
分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.
详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.
故选D.
点睛:考查中位数的定义,看懂条形统计图是解题的关键.
5、D
【解析】
A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;
B选项:因为-2<0,图象在第二、四象限,故本选项正确;
C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;
D选项:当x>0时,y<0,故本选项错误.
故选D.
6、C
【解析】
【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.
【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;
B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;
C. 球的主视图只能是圆,故符合题意;
D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,
故选C.
【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键.
7、C
【解析】
过点B作BE⊥AD于E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.
【详解】
如图,过点B作BE⊥AD于E.∵∠A=60°,设AB边的长为x,∴BE=AB∙sin60°=x.∵平行四边形ABCD的周长为12,∴AB=(12-2x)=6-x,∴y=AD∙BE=(6-x)×x=﹣(0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.
【点睛】
本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.
8、D
【解析】
如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判断;
【详解】
如图,点O的运动轨迹是图在黄线,
作CH⊥BD于点H,
∵六边形ABCDE是正六边形,
∴∠BCD=120º,
∴∠CBH=30º,
∴BH=cos30 º·BC=,
∴BD=.
∵DK=,
∴BK=,
点B,O间的距离d的最小值为0,最大值为线段BK=,
∴0≤d≤,即0≤d≤3.1,
故点B,O间的距离不可能是3.4,
故选:D.
【点睛】
本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键.
9、C
【解析】
列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.
【详解】
解:列表得:
A
B
C
D
E
A
AA
BA
CA
DA
EA
B
AB
BB
CB
DB
EB
C
AC
BC
CC
DC
EC
D
AD
BD
CD
DD
ED
E
AE
BE
CE
DE
EE
∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,
∴恰好选择从同一个口进出的概率为=,
故选C.
【点睛】
此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
10、B
【解析】
分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“”表示,大于向右小于向左.
点睛:不等式组的解集为−1⩽x,≥向右画;< ,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“”要用空心圆点表示.
11、A
【解析】
本题首先利用A点恰好落在边CD上,可以求出A´C=BC´=1,又因为A´B=可以得出△A´BC为等腰直角三角形,即可以得出∠ABA´、∠DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´
【详解】
先连接BD,首先求得正方形ABCD的面积为,由分析可以求出∠ABA´=∠DBD´=45°,即可以求得扇形ABA´的面积为,扇形BDD´的面积为,面积ADA´=面积ABCD-面积A´BC-扇形面积ABA´=;面积DA´D´=扇形面积BDD´-面积DBA´-面积BA´D´=,阴影部分面积=面积DA´D´+面积ADA´=
【点睛】
熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.
12、D
【解析】
试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.
解:根据给出的3个图形可以知道:
第1个图形中三角形的个数是4,
第2个图形中三角形的个数是8,
第3个图形中三角形的个数是12,
从而得出一般的规律,第n个图形中三角形的个数是4n.
故选D.
考点:规律型:图形的变化类.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、B
【解析】
根据平行四边形的判定与矩形的判定定理,即可求得答案.
【详解】
∵对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,
∴对角线相等且互相平分的四边形一定是矩形.
故选B.
【点睛】
此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理.此题比较简单,解题的关键是熟记定理.
14、2
【解析】
解:如图,过D点作DG⊥AC,垂足为G,过A点作AH⊥BC,垂足为H,
∵AB=AC,点E为BD的中点,且AD=AB,
∴设BE=DE=x,则AD=AF=1x.
∵DG⊥AC,EF⊥AC,
∴DG∥EF,∴,即,解得.
∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.
又∵DF∥BC,∴∠DFG=∠C,
∴Rt△DFG∽Rt△ACH,∴,即,解得.
在Rt△ABH中,由勾股定理,得.
∴.
又∵△ADF∽△ABC,∴,
∴
∴.
故答案为:2.
15、1π+1.
【解析】
分析:根据题意求出OC,根据弧长公式分别求出AB、CD的弧长,根据扇形周长公式计算.
详解:由题意得,OC=AC=OA=15,
的长==20π,
的长==10π,
∴扇面ABDC的周长=20π+10π+15+15=1π+1(cm),
故答案为1π+1.
点睛:本题考查的是弧长的计算,掌握弧长公式: 是解题的关键.
16、
【解析】
直接把分子相加减即可.
【详解】
=,故答案为:.
【点睛】
本题考查了分式的加减法,关键是要注意通分及约分的灵活应用.
17、2≤x<1
【解析】
分别解两个不等式得到x<1和x≥2,然后根据大小小大中间找确定不等数组的解集.
【详解】
解:,
解①得x<1,
解②得x≥2,
所以不等式组的解集为2≤x<1.
故答案为2≤x<1.
【点睛】
本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
18、1.
【解析】
根据一副直角三角板的各个角的度数,结合三角形内角和定理,即可求解.
【详解】
∵∠3=60°,∠4=45°,
∴∠1=∠5=180°﹣∠3﹣∠4=1°.
故答案为:1.
【点睛】
本题主要考查三角形的内角和定理以及对顶角的性质,掌握三角形的内角和等于180°,是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (Ⅰ)发射台与雷达站之间的距离约为;(Ⅱ)这枚火箭从到的平均速度大约是.
【解析】
(Ⅰ)在Rt△ACD中,根据锐角三角函数的定义,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的长,利用∠ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.
【详解】
(Ⅰ)在中,,≈0.74,
∴.
答:发射台与雷达站之间的距离约为.
(Ⅱ)在中,,
∴.
∵在中,,
∴.
∴.
答:这枚火箭从到的平均速度大约是.
【点睛】
本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.
20、(1)见解析,(2)CF=cm.
【解析】
(1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE=∠BDC就可以;
(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于BD•CE=BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.
【详解】
证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,
∴∠CDB+∠DBC=90°.
∵CE⊥BD,∴∠DBC+∠ECB=90°.
∴∠ECB=∠CDB.
∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,
∴∠CFB=∠BCF
∴BF=BC
(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).
在Rt△BCD中,由勾股定理得BD=.
又∵BD•CE=BC•DC,
∴CE=.
∴BE=.
∴EF=BF﹣BE=3﹣.
∴CF=cm.
【点睛】
本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.
21、25%
【解析】
首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.
【详解】
设这两年中获奖人次的平均年增长率为x,
根据题意得:48+48(1+x)+48(1+x)2=183,
解得:x1==25%,x2=﹣(不符合题意,舍去).
答:这两年中获奖人次的年平均年增长率为25%
22、(1);(2);(3)
【解析】
(1)根据抛物线的函数表达式,利用二次函数的性质即可找出抛物线的对称轴;(2)根据抛物线的对称轴及即可得出点、的坐标,根据点的坐标,利用待定系数法即可求出抛物线的函数表达式;(3)利用配方法求出抛物线顶点的坐标,依照题意画出图形,观察图形可得出,再利用一次函数图象上点的坐标特征可得出,结合的取值范围即可得出的取值范围.
【详解】
(1)∵抛物线的表达式为,
∴抛物线的对称轴为直线.
故答案为:.
(2)∵抛物线的对称轴为直线,,
∴点的坐标为,点的坐标为.
将代入,得:,
解得:,
∴抛物线的函数表达式为.
(3)∵,
∴点的坐标为.
∵直线y=n与直线的交点的横坐标记为,且当时,总有,
∴x2
相关试卷
这是一份陕西省咸阳市实验中学2021-2022学年中考押题数学预测卷含解析,共29页。试卷主要包含了考生要认真填写考场号和座位序号,计算的结果为,下列运算正确的是等内容,欢迎下载使用。
这是一份2022年陕西省西安市西北工业大附属中学中考数学仿真试卷含解析,共17页。
这是一份2021-2022学年陕西省西北工业大附属中学中考数学猜题卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,的倒数是等内容,欢迎下载使用。