陕西省渭南市合阳县市级名校2022年中考数学五模试卷含解析
展开
这是一份陕西省渭南市合阳县市级名校2022年中考数学五模试卷含解析,共21页。试卷主要包含了计算的值为,已知x=2﹣,则代数式等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,AD∥BC,AC平分∠BAD,若∠B=40°,则∠C的度数是( )
A.40° B.65° C.70° D.80°
2.下列事件中是必然事件的是( )
A.早晨的太阳一定从东方升起
B.中秋节的晚上一定能看到月亮
C.打开电视机,正在播少儿节目
D.小红今年14岁,她一定是初中学生
3.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )
A.四条边相等的四边形是菱形 B.一组邻边相等的平行四边形是菱形
C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直平分的四边形是菱形
4.如图,AB∥CD,直线EF与AB、CD分别相交于E、F,AM⊥EF于点M,若∠EAM=10°,那么∠CFE等于( )
A.80° B.85° C.100° D.170°
5.计算的值为( )
A. B.-4 C. D.-2
6.下列图形中,既是中心对称图形又是轴对称图形的是( )
A.正五边形 B.平行四边形 C.矩形 D.等边三角形
7.已知x=2﹣,则代数式(7+4)x2+(2+)x+ 的值是( )
A.0 B. C.2+ D.2﹣
8.如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )
A.米 B.米 C.米 D.米
9.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为( )
A.7 B.8 C.9 D.10
10.已知关于x的不等式ax<b的解为x>-2,则下列关于x的不等式中,解为x<2的是( )
A.ax+2<-b+2 B.–ax-1<b-1 C.ax>b D.
二、填空题(共7小题,每小题3分,满分21分)
11.已知二次函数与一次函数的图象相交于点,如图所示,则能使成立的x的取值范围是______.
12.阅读材料:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为.然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1.根据以上阅读材料,可构图求出代数式的最小值为_____.
13.从-5,-,-,-1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为______.
14.已知抛物线y=ax2+bx+c=0(a≠0) 与 轴交于 , 两点,若点 的坐标为 ,线段 的长为8,则抛物线的对称轴为直线 ________________.
15.甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是_____.
16.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.
17.若关于x的方程x2-mx+m=0有两个相等实数根,则代数式2m2-8m+3的值为__________.
三、解答题(共7小题,满分69分)
18.(10分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.
(1)直接写出∠D与∠MAC之间的数量关系;
(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;
②如图2,直接写出AB,BD与BC之间的数量关系;
(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.
19.(5分)已知正方形ABCD的边长为2,作正方形AEFG(A,E,F,G四个顶点按逆时针方向排列),连接BE、GD,
(1)如图①,当点E在正方形ABCD外时,线段BE与线段DG有何关系?直接写出结论;
(2)如图②,当点E在线段BD的延长线上,射线BA与线段DG交于点M,且DG=2DM时,求边AG的长;
(3)如图③,当点E在正方形ABCD的边CD所在的直线上,直线AB与直线DG交于点M,且DG=4DM时,直接写出边AG的长.
20.(8分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
21.(10分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。求文具袋和圆规的单价。学校准备购买文具袋20个,圆规若干,文具店给出两种优惠方案:
方案一:购买一个文具袋还送1个圆规。
方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.
①设购买面规m个,则选择方案一的总费用为______,选择方案二的总费用为______.
②若学校购买圆规100个,则选择哪种方案更合算?请说明理由.
22.(10分)先化简再求值:,其中,.
23.(12分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
(1)求证:四边形BFCE是平行四边形;
(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.
24.(14分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.
甲
乙
价格(万元/台)
7
5
每台日产量(个)
100
60
(1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据平行线性质得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度数.
【详解】
解:∵AD∥BC,
∴∠B+∠BAD=180°,
∵∠B=40°,
∴∠BAD=140°,
∵AC平分∠DAB,
∴∠DAC=∠BAD=70°,
∵A∥BC,
∴∠C=∠DAC=70°,
故选C.
【点睛】
本题考查了平行线性质和角平分线定义,关键是求出∠DAC或∠BAC的度数.
2、A
【解析】
必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.
【详解】
解:B、C、D选项为不确定事件,即随机事件.故错误;
一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.
故选A.
【点睛】
该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.
3、A
【解析】
根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.
【详解】
∵ 将 △ABC 延底边 BC 翻折得到 △DBC ,
∴AB=BD , AC=CD ,
∵AB=AC ,
∴AB=BD=CD=AC ,
∴ 四边形 ABDC 是菱形;
故选A.
【点睛】
本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.
4、C
【解析】
根据题意,求出∠AEM,再根据AB∥CD,得出∠AEM与∠CFE互补,求出∠CFE.
【详解】
∵AM⊥EF,∠EAM=10°
∴∠AEM=80°
又∵AB∥CD
∴∠AEM+∠CFE=180°
∴∠CFE=100°.
故选C.
【点睛】
本题考查三角形内角和与两条直线平行内错角相等.
5、C
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=-3=-2,
故选C.
【点睛】
本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
6、C
【解析】
分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.
详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.
B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.
C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.
D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.
故选C.
点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.
7、C
【解析】
把x的值代入代数式,运用完全平方公式和平方差公式计算即可
【详解】
解:当x=2﹣时,
(7+4)x2+(2+)x+
=(7+4)(2﹣)2+(2+)(2﹣)+
=(7+4)(7-4)+1+
=49-48+1+
=2+
故选:C.
【点睛】
此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.
8、A
【解析】
利用锐角三角函数关系即可求出小刚上升了的高度.
【详解】
在Rt△AOB中,∠AOB=90°,AB=300米,
BO=AB•sinα=300sinα米.
故选A.
【点睛】
此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键.
9、C
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
根据三视图知,该几何体中小正方体的分布情况如下图所示:
所以组成这个几何体的小正方体个数最多为9个,
故选C.
【点睛】
考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.
10、B
【解析】
∵关于x的不等式ax<b的解为x>-2,
∴a
相关试卷
这是一份2023年陕西省渭南市合阳县中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西省渭南市富平县重点名校2022年中考数学五模试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,运用图形变化的方法研究下列问题,下列计算中正确的是等内容,欢迎下载使用。
这是一份辽宁省市级名校2021-2022学年中考数学五模试卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,估计﹣1的值为,若二次函数的图象经过点,计算-3-1的结果是等内容,欢迎下载使用。