湖北省武汉市黄陂区重点达标名校2022年中考二模数学试题含解析
展开
这是一份湖北省武汉市黄陂区重点达标名校2022年中考二模数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列计算正确的是( )
A.a²+a²=a4 B.(-a2)3=a6
C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b
2.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
A. B.2 C. D.2
3.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是( )
A.AE=BF B.∠ADE=∠BEF
C.△DEF是等边三角形 D.△BEF是等腰三角形
4.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为( )
A.﹣4 B.7﹣4 C.6﹣ D.
5.在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )
A. B. C. D.
6.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )
A. B. C. D.
7.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为( )
A.60° B.65° C.70° D.75°
8.观察下列图案,是轴对称而不是中心对称的是( )
A. B. C. D.
9.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:
阅读时间(小时)
2
2.5
3
3.5
4
学生人数(名)
1
2
8
6
3
则关于这20名学生阅读小时数的说法正确的是( )
A.众数是8 B.中位数是3
C.平均数是3 D.方差是0.34
10.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为( )
A.﹣10= B.+10=
C.﹣10= D.+10=
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.
12.已知x+y=8,xy=2,则x2y+xy2=_____.
13.若式子在实数范围内有意义,则x的取值范围是_______.
14.如图,在△ABC中,P,Q分别为AB,AC的中点.若S△APQ=1,则S四边形PBCQ=__.
15.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.
16.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_____.
三、解答题(共8题,共72分)
17.(8分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:
天数(x)
1
3
6
10
每件成本p(元)
7.5
8.5
10
12
任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=,
设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?
18.(8分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.
(1)求A,B两点间的距离(结果精确到0.1km).
(2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56°,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.1.)
19.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.
20.(8分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.
21.(8分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)B点坐标为 ,并求抛物线的解析式;
(2)求线段PC长的最大值;
(3)若△PAC为直角三角形,直接写出此时点P的坐标.
22.(10分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
23.(12分)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.
(1)求证:PC是⊙O的切线;
(2)若∠ABC=60°,AB=10,求线段CF的长.
24.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
各项计算得到结果,即可作出判断.
【详解】
A、原式=2a2,不符合题意;
B、原式=-a6,不符合题意;
C、原式=a2+2ab+b2,不符合题意;
D、原式=-4b,符合题意,
故选:D.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
2、C
【解析】
通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.
【详解】
过点D作DE⊥BC于点E
.
由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..
∴AD=a.
∴DE•AD=a.
∴DE=1.
当点F从D到B时,用s.
∴BD=.
Rt△DBE中,
BE=,
∵四边形ABCD是菱形,
∴EC=a-1,DC=a,
Rt△DEC中,
a1=11+(a-1)1.
解得a=.
故选C.
【点睛】
本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.
3、D
【解析】
连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.
【详解】
连接BD,∵四边形ABCD是菱形,
∴AD=AB,∠ADB=∠ADC,AB∥CD,
∵∠A=60°,
∴∠ADC=120°,∠ADB=60°,
同理:∠DBF=60°,
即∠A=∠DBF,
∴△ABD是等边三角形,
∴AD=BD,
∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
∴∠ADE=∠BDF,
∵在△ADE和△BDF中,
,
∴△ADE≌△BDF(ASA),
∴DE=DF,AE=BF,故A正确;
∵∠EDF=60°,
∴△EDF是等边三角形,
∴C正确;
∴∠DEF=60°,
∴∠AED+∠BEF=120°,
∵∠AED+∠ADE=180°-∠A=120°,
∴∠ADE=∠BEF;
故B正确.
∵△ADE≌△BDF,
∴AE=BF,
同理:BE=CF,
但BE不一定等于BF.
故D错误.
故选D.
【点睛】
本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.
4、A
【解析】
∵O的直径AB=2,
∴∠C=90°,
∵C是弧AB的中点,
∴,
∴AC=BC,
∴∠CAB=∠CBA=45°,
∵AE,BE分别平分∠BAC和∠ABC,
∴∠EAB=∠EBA=22.5°,
∴∠AEB=180°− (∠BAC+∠CBA)=135°,
连接EO,
∵∠EAB=∠EBA,
∴EA=EB,
∵OA=OB,
∴EO⊥AB,
∴EO为Rt△ABC内切圆半径,
∴S△ABC=(AB+AC+BC)⋅EO=AC⋅BC,
∴EO=−1,
∴AE2=AO2+EO2=12+(−1)2=4−2,
∴扇形EAB的面积==,△ABE的面积=AB⋅EO=−1,
∴弓形AB的面积=扇形EAB的面积−△ABE的面积=,
∴阴影部分的面积=O的面积−弓形AB的面积=−()=−4,
故选:A.
5、A
【解析】
解:可把A、B、C、D选项折叠,能够复原(1)图的只有A.
故选A.
6、B
【解析】
解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF
再由∠BDF+∠ADE=∠BDF+∠BFD=120º
可得∠ADE=∠BFD,又因∠A=∠B=60º,
根据两角对应相等的两三角形相似可得△AED∽△BDF
所以,
设AD=a,BD=2a,AB=BC=CA=3a,
再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,
所以
整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;
把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,
即
故选B.
【点睛】
本题考查相似三角形的判定及性质.
7、D
【解析】
解:连接OD
∵∠AOD=60°,
∴ACD=30°.
∵∠CEB是△ACE的外角,
∴△CEB=∠ACD+∠CAO=30°+45°=75°
故选:D
8、A
【解析】
试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:
A、是轴对称图形,不是中心对称图形,故本选项符合题意;
B、不是轴对称图形,是中心对称图形,故本选项不符合题意;
C、不是轴对称图形,是中心对称图形,故本选项不符合题意;
D、是轴对称图形,也是中心对称图形,故本选项不符合题意.
故选A.
点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做对称中心.
9、B
【解析】
A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.
【详解】
解: A、由统计表得:众数为3,不是8,所以此选项不正确;
B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;
C、平均数=,所以此选项不正确;
D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此选项不正确;
故选B.
【点睛】
本题考查方差;加权平均数;中位数;众数.
10、B
【解析】
根据题意表示出衬衫的价格,利用进价的变化得出等式即可.
【详解】
解:设第一批购进x件衬衫,则所列方程为:
+10=.
故选B.
【点睛】
此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、9n+1.
【解析】
∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,
∴正方形和等边三角形的和=6+6=12=9+1;
∵第2个图由11个正方形和10个等边三角形组成,
∴正方形和等边三角形的和=11+10=21=9×2+1;
∵第1个图由16个正方形和14个等边三角形组成,
∴正方形和等边三角形的和=16+14=10=9×1+1,
…,
∴第n个图中正方形和等边三角形的个数之和=9n+1.
故答案为9n+1.
12、1
【解析】
将所求式子提取xy分解因式后,把x+y与xy的值代入计算,即可得到所求式子的值.
【详解】
∵x+y=8,xy=2,
∴x2y+xy2=xy(x+y)=2×8=1.
故答案为:1.
【点睛】
本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式.
13、x≠﹣1
【解析】
分式有意义的条件是分母不等于零.
【详解】
∵式子在实数范围内有意义,
∴x+1≠0,解得:x≠-1.
故答案是:x≠-1.
【点睛】
考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键.
14、1
【解析】
根据三角形的中位线定理得到PQ=BC,得到相似比为,再根据相似三角形面积之比等于相似比的平方,可得到结果.
【详解】
解:∵P,Q分别为AB,AC的中点,
∴PQ∥BC,PQ=BC,
∴△APQ∽△ABC,
∴ =()2=,
∵S△APQ=1,
∴S△ABC=4,
∴S四边形PBCQ=S△ABC﹣S△APQ=1,
故答案为1.
【点睛】
本题考查相似三角形的判定和性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
15、
【解析】
∵投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,
∴其概率是=.
【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
16、120°
【解析】
设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.
【详解】
设扇形的半径为r,圆心角为n°.
由题意:,
∴r=4,
∴
∴n=120,
故答案为120°
【点睛】
本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.
三、解答题(共8题,共72分)
17、(1)W=;(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.
【解析】
(1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.
【详解】
(1)设p与x之间的函数关系式为p=kx+b,则有
,解得,,
即p与x的函数关系式为p=0.5x+7(1≤x≤15,x为整数),
当1≤x<10时,
W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,
当10≤x≤15时,
W=[20﹣(0.5x+7)]×40=﹣20x+520,
即W=;
(2)当1≤x<10时,
W=﹣x2+16x+260=﹣(x﹣8)2+324,
∴当x=8时,W取得最大值,此时W=324,
当10≤x≤15时,
W=﹣20x+520,
∴当x=10时,W取得最大值,此时W=320,
∵324>320,
∴李师傅第8天创造的利润最大,最大利润是324元;
(3)当1≤x<10时,
令﹣x2+16x+260=299,得x1=3,x2=13,
当W>299时,3<x<13,
∵1≤x<10,
∴3<x<10,
当10≤x≤15时,
令W=﹣20x+520>299,得x<11.05,
∴10≤x≤11,
由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),
即李师傅共可获得160元奖金.
【点睛】
本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.
18、(1)1.7km;(2)8.9km;
【解析】
(1)根据锐角三角函数可以表示出OA和OB的长,从而可以求得AB的长;(2)根据锐角三角函数可以表示出CD,从而可以求得此时雷达站C和运载火箭D两点间的距离.
【详解】
解:(1)由题意可得,
∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km,
∴AO=OC•tan34°,BO=OC•tan45°,
∴AB=OB﹣OA=OC•tan45°﹣OC•tan34°=OC(tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km,
即A,B两点间的距离是1.7km;
(2)由已知可得,
∠DOC=90°,OC=5km,∠DCO=56°,
∴cos∠DCO=
即
∵sin34°=cos56°,
∴
解得,CD≈8.9
答:此时雷达站C和运载火箭D两点间的距离是8.9km.
【点睛】
本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答.
19、(1)60°;(2)证明略;(3)
【解析】
(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;
(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;
(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.
【详解】
(1)∵∠ABC与∠D都是弧AC所对的圆周角,
∴∠ABC=∠D=60°;
(2)∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,
∴AE是⊙O的切线;
(3)如图,连接OC,
∵OB=OC,∠ABC=60°,
∴△OBC是等边三角形,
∴OB=BC=4,∠BOC=60°,
∴∠AOC=120°,
∴劣弧AC的长为==.
【点睛】
本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.
20、见解析,.
【解析】
画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.
【详解】
解:画树状图为:
共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,
所以两次抽取的卡片上的数字都是偶数的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
21、(1)(4,6);y=1x1﹣8x+6(1);(3)点P的坐标为(3,5)或().
【解析】
(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.
(1)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.
(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论.
【详解】
解:(1)∵B(4,m)在直线y=x+1上,
∴m=4+1=6,
∴B(4,6),
故答案为(4,6);
∵A(,),B(4,6)在抛物线y=ax1+bx+6上,
∴,解得,
∴抛物线的解析式为y=1x1﹣8x+6;
(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n1﹣8n+6),
∴PC=(n+1)﹣(1n1﹣8n+6),
=﹣1n1+9n﹣4,
=﹣1(n﹣)1+,
∵PC>0,
∴当n=时,线段PC最大且为.
(3)∵△PAC为直角三角形,
i)若点P为直角顶点,则∠APC=90°.
由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;
ii)若点A为直角顶点,则∠PAC=90°.
如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.
过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,
∴MN=AN=,
∴OM=ON+MN=+=3,
∴M(3,0).
设直线AM的解析式为:y=kx+b,
则:,解得,
∴直线AM的解析式为:y=﹣x+3 ①
又抛物线的解析式为:y=1x1﹣8x+6 ②
联立①②式,
解得:或(与点A重合,舍去),
∴C(3,0),即点C、M点重合.
当x=3时,y=x+1=5,
∴P1(3,5);
iii)若点C为直角顶点,则∠ACP=90°.
∵y=1x1﹣8x+6=1(x﹣1)1﹣1,
∴抛物线的对称轴为直线x=1.
如图1,作点A(,)关于对称轴x=1的对称点C,
则点C在抛物线上,且C(,).
当x=时,y=x+1=.
∴P1(,).
∵点P1(3,5)、P1(,)均在线段AB上,
∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).
【点睛】
本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.
22、(1)y=﹣2x2+x+3;(2)∠ACB=41°;(3)D(,).
【解析】
试题分析:把点的坐标代入即可求得抛物线的解析式.
作BH⊥AC于点H,求出的长度,即可求出∠ACB的度数.
延长CD交x轴于点G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直线的方程,和抛物线的方程联立即可求得点的坐标.
试题解析:(1)由题意,得
解得.
∴这条抛物线的表达式为.
(2)作BH⊥AC于点H,
∵A点坐标是(-1,0),C点坐标是(0,3),B点坐标是(,0),
∴AC=,AB=,OC=3,BC=.
∵,即∠BAD=,
∴.
Rt△ BCH中,,BC=,∠BHC=90º,
∴.
又∵∠ACB是锐角,∴.
(3)延长CD交x轴于点G,
∵Rt△ AOC中,AO=1,AC=,
∴.
∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.
∴AG = CG.
∴.
∴AG=1.∴G点坐标是(4,0).
∵点C坐标是(0,3),∴.
∴ 解得,(舍).
∴点D坐标是
23、(1)证明见解析(2)1
【解析】
(1)连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;
(2)先证△OBC是等边三角形得∠COB=60°,再由(1)中所证切线可得∠OCF=90°,结合半径OC=1可得答案.
【详解】
(1)连接OC.
∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC.
在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.
∵PA是半⊙O的切线,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切线.
(2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°.
∵AB=10,∴OC=1.
由(1)知∠OCF=90°,∴CF=OC•tan∠COB=1.
【点睛】
本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.
24、20°
【解析】
依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°-35°=20°.
【详解】
∵∠EFG=90°,∠E=35°,
∴∠FGH=55°,
∵GE平分∠FGD,AB∥CD,
∴∠FHG=∠HGD=∠FGH=55°,
∵∠FHG是△EFH的外角,
∴∠EFB=55°﹣35°=20°.
【点睛】
本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.
相关试卷
这是一份湖北省武汉市黄陂区重点达标名校2021-2022学年中考数学模拟试题含解析,共19页。试卷主要包含了若二次函数的图象经过点等内容,欢迎下载使用。
这是一份2022年湖北武汉黄陂区达标名校中考五模数学试题含解析,共26页。试卷主要包含了如图,,,则的大小是等内容,欢迎下载使用。
这是一份2022年湖北省武汉市达标名校中考联考数学试题含解析,共19页。试卷主要包含了7的相反数是,已知点A等内容,欢迎下载使用。