第5章二次函数解答题-提升题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)
展开
这是一份第5章二次函数解答题-提升题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏),共51页。试卷主要包含了两点,是函数y=图象的“2阶方点”,x+m﹣4,其中m>2等内容,欢迎下载使用。
第5章二次函数解答题-提升题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)
一.二次函数图象与系数的关系(共1小题)
1.(2021•南京)已知二次函数y=ax2+bx+c的图象经过(﹣2,1),(2,﹣3)两点.
(1)求b的值;
(2)当c>﹣1时,该函数的图象的顶点的纵坐标的最小值是 .
(3)设(m,0)是该函数的图象与x轴的一个公共点.当﹣1<m<3时,结合函数的图象,直接写出a的取值范围.
二.二次函数综合题(共15小题)
2.(2022•镇江)一次函数y=x+1的图像与x轴交于点A,二次函数y=ax2+bx+c(a≠0)的图像经过点A、原点O和一次函数y=x+1图像上的点B(m,).
(1)求这个二次函数的表达式;
(2)如图1,一次函数y=x+n(n>﹣,n≠1)与二次函数y=ax2+bx+c(a≠0)的图像交于点C(x1,y1)、D(x2,y2)(x1<x2),过点C作直线l1⊥x轴于点E,过点D作直线l2⊥x轴,过点B作BF⊥l2于点F.
①x1= ,x2= (分别用含n的代数式表示);
②证明:AE=BF;
(3)如图2,二次函数y=a(x﹣t)2+2的图像是由二次函数y=ax2+bx+c(a≠0)的图像平移后得到的,且与一次函数y=x+1的图像交于点P、Q(点P在点Q的左侧),过点P作直线l3⊥x轴,过点Q作直线l4⊥x轴,设平移后点A、B的对应点分别为A′、B′,过点A′作A′M⊥l3于点M,过点B′作B′N⊥l4于点N.
①A′M与B′N相等吗?请说明你的理由;
②若A′M+3B′N=2,求t的值.
3.(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(,)是函数y=x图象的“阶方点”;点(2,1)是函数y=图象的“2阶方点”.
(1)在①(﹣2,﹣);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y=图象的“1阶方点”的有 (填序号);
(2)若y关于x的一次函数y=ax﹣3a+1图象的“2阶方点”有且只有一个,求a的值;
(3)若y关于x的二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,请直接写出n的取值范围.
4.(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:
x
…
﹣1
0
1
2
3
…
y
…
4
3
0
﹣5
﹣12
…
(1)求二次函数y=ax2+bx+3的表达式;
(2)将二次函数y=ax2+bx+3的图象向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图象,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y= ,实数k的取值范围是 ;
(3)A、B、C是二次函数y=ax2+bx+3的图象上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图象的对称轴对称,求∠ACB的度数.
5.(2022•泰州)如图,二次函数y1=x2+mx+1的图象与y轴相交于点A,与反比例函数y2=(x>0)的图象相交于点B(3,1).
(1)求这两个函数的表达式;
(2)当y1随x的增大而增大且y1<y2时,直接写出x的取值范围;
(3)平行于x轴的直线l与函数y1的图象相交于点C、D(点C在点D的左边),与函数y2的图象相交于点E.若△ACE与△BDE的面积相等,求点E的坐标.
6.(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:
(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;
(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;
(3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.
7.(2022•连云港)已知二次函数y=x2+(m﹣2)x+m﹣4,其中m>2.
(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;
(2)求证:二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;
(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=﹣x﹣2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.
8.(2021•淮安)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣3,0)和点B(5,0),顶点为点D,动点M、Q在x轴上(点M在点Q的左侧),在x轴下方作矩形MNPQ,其中MQ=3,MN=2.矩形MNPQ沿x轴以每秒1个单位长度的速度向右匀速运动,运动开始时,点M的坐标为(﹣6,0),当点M与点B重合时停止运动,设运动的时间为t秒(t>0).
(1)b= ,c= .
(2)连接BD,求直线BD的函数表达式.
(3)在矩形MNPQ运动的过程中,MN所在直线与该二次函数的图象交于点G,PQ所在直线与直线BD交于点H,是否存在某一时刻,使得以G、M、H、Q为顶点的四边形是面积小于10的平行四边形?若存在,求出t的值;若不存在,请说明理由.
(4)连接PD,过点P作PD的垂线交y轴于点R,直接写出在矩形MNPQ整个运动过程中点R运动的路径长.
9.(2021•无锡)在平面直角坐标系中,O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,二次函数y=ax2+2x+c的图象过B、C两点,且与x轴交于另一点A,点M为线段OB上的一个动点,过点M作直线l平行于y轴交BC于点F,交二次函数y=ax2+2x+c的图象于点E.
(1)求二次函数的表达式;
(2)当以C、E、F为顶点的三角形与△ABC相似时,求线段EF的长度;
(3)已知点N是y轴上的点,若点N、F关于直线EC对称,求点N的坐标.
10.(2021•盐城)学习了图形的旋转之后,小明知道,将点P绕着某定点A顺时针旋转一定的角度α,能得到一个新的点P′,经过进一步探究,小明发现,当上述点P在某函数图象上运动时,点P′也随之运动,并且点P′的运动轨迹能形成一个新的图形.
试根据下列各题中所给的定点A的坐标、角度α的大小来解决相关问题.
【初步感知】
如图1,设A(1,1),α=90°,点P是一次函数y=kx+b图象上的动点,已知该一次函数的图象经过点P1(﹣1,1).
(1)点P1旋转后,得到的点P1′的坐标为 ;
(2)若点P′的运动轨迹经过点P2′(2,1),求原一次函数的表达式.
【深入感悟】
如图2,设A(0,0),α=45°,点P是反比例函数y=﹣(x<0)的图象上的动点,过点P′作二、四象限角平分线的垂线,垂足为M,求△OMP′的面积.
【灵活运用】
如图3,设A(1,﹣),α=60°,点P是二次函数y=x2+2x+7图象上的动点,已知点B(2,0)、C(3,0),试探究△BCP′的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.
11.(2021•苏州)如图,二次函数y=x2﹣(m+1)x+m(m是实数,且﹣1<m<0)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴与x轴交于点C.已知点D位于第一象限,且在对称轴上,OD⊥BD,点E在x轴的正半轴上,OC=EC,连接ED并延长交y轴于点F,连接AF.
(1)求A、B、C三点的坐标(用数字或含m的式子表示);
(2)已知点Q在抛物线的对称轴上,当△AFQ的周长的最小值等于时,求m的值.
12.(2021•扬州)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C.
(1)b= ,c= ;
(2)若点D在该二次函数的图象上,且S△ABD=2S△ABC,求点D的坐标;
(3)若点P是该二次函数图象上位于x轴上方的一点,且S△APC=S△APB,直接写出点P的坐标.
13.(2020•无锡)已知二次函数y=ax2﹣4ax+1的图象与x轴仅有一个公共点A.
(1)求a的值;
(2)设该二次函数图象与y轴交于点B,点C为直线AB下方抛物线上的一个动点,点C运动到何处时,△ABC面积最大?请求出此时C点的坐标.
(3)过点(0,﹣1)作直线l平行于x轴,在抛物线上任取一点D(A点除外),过点D向直线l作垂线,垂足为E点,若在抛物线的对称轴上存在一点P,使得△PDE始终为等腰三角形.请你猜测点P的坐标,并给出证明过程.
猜测:点P的坐标为 .
证明:
14.(2020•镇江)如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN分别与x轴相交于A、B两点.
(1)当a=﹣1时,求点N的坐标及的值;
(2)随着a的变化,的值是否发生变化?请说明理由;
(3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式.
15.(2020•宿迁)二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E.
(1)求这个二次函数的表达式,并写出点E的坐标;
(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;
(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.
16.(2020•常州)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.
(1)填空:b= ;
(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;
(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.
第5章二次函数解答题-提升题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)
参考答案与试题解析
一.二次函数图象与系数的关系(共1小题)
1.(2021•南京)已知二次函数y=ax2+bx+c的图象经过(﹣2,1),(2,﹣3)两点.
(1)求b的值;
(2)当c>﹣1时,该函数的图象的顶点的纵坐标的最小值是 1 .
(3)设(m,0)是该函数的图象与x轴的一个公共点.当﹣1<m<3时,结合函数的图象,直接写出a的取值范围.
【解答】解:(1)把(﹣2,1),(2,﹣3)代入y=ax2+bx+c中,
得:,
两式相减得﹣4=4b,
∴b=﹣1;
(2)把b=﹣1代入①得:1=4a+2+c,
∴a=,
∴顶点的纵坐标,
∵c>﹣1,
∴c+1>0,
下面证明对于任意的正数,a,b,都有a+b≥,
∵,
∴a+b,当a=b时取等号,
∴=1,
∴该函数的图象的顶点的纵坐标的最小值是 1.
(3)方法一、由题意得:am2﹣m+c=0,
且c=﹣1﹣4a,
∴am2﹣m﹣1﹣4a=0,
Δ=1﹣4a(﹣1﹣4a)=1+4a+16a2,
若﹣1<m<2,
则经过(﹣2,1),(2,﹣3),(m,0)的二次函数的图象开口向下,
∴a<0,且,
解得a<0,
∴a<0,
若2<m<3,
则经过(﹣2,1),(2,﹣3),(m,0)的二次函数的图象开口向上,
∴a>0,且<3,
解得a,
方法二、由题意可得:或,
解得:a>或a<0,
综上 a<0或.
二.二次函数综合题(共15小题)
2.(2022•镇江)一次函数y=x+1的图像与x轴交于点A,二次函数y=ax2+bx+c(a≠0)的图像经过点A、原点O和一次函数y=x+1图像上的点B(m,).
(1)求这个二次函数的表达式;
(2)如图1,一次函数y=x+n(n>﹣,n≠1)与二次函数y=ax2+bx+c(a≠0)的图像交于点C(x1,y1)、D(x2,y2)(x1<x2),过点C作直线l1⊥x轴于点E,过点D作直线l2⊥x轴,过点B作BF⊥l2于点F.
①x1= ,x2= (分别用含n的代数式表示);
②证明:AE=BF;
(3)如图2,二次函数y=a(x﹣t)2+2的图像是由二次函数y=ax2+bx+c(a≠0)的图像平移后得到的,且与一次函数y=x+1的图像交于点P、Q(点P在点Q的左侧),过点P作直线l3⊥x轴,过点Q作直线l4⊥x轴,设平移后点A、B的对应点分别为A′、B′,过点A′作A′M⊥l3于点M,过点B′作B′N⊥l4于点N.
①A′M与B′N相等吗?请说明你的理由;
②若A′M+3B′N=2,求t的值.
【解答】解:(1)∵直线y=x+1与x轴交于点A,
令y=0,得x+1=0,
解得:x=﹣2,
∴A(﹣2,0),
∵直线y=x+1经过点B(m,),
∴m+1=,
解得:m=,
∴B(,),
∵抛物线y=ax2+bx+c(a≠0)经过A(﹣2,0),O(0,0),B(,),
设y=ax(x+2),则=a××(+2),
解得:a=1,
∴y=x(x+2)=x2+2x,
∴这个二次函数的表达式为y=x2+2x;
(2)①由题意得:x2+2x=x+n(n>﹣),
解得:x1=,x2=,
故答案为:,;
②当n>1时,CD位于AB的上方,
∵A(﹣2,0),B(,),
∴AE=﹣2﹣=,BF=﹣=,
∴AE=BF,
当<n<1时,CD位于AB的下方,
∵A(﹣2,0),B(,),
∴AE=﹣(﹣2)=,BF=﹣=,
∴AE=BF,
∴当n>﹣且n≠1时,AE=BF;
(3)方法一:①设P、Q平移前的对应点分别为P′、Q′,则P′Q′∥PQ,
∴P′Q′∥AB,
∵平移后点A、B的对应点分别为A′、B′,
由(2)②及平移的性质可知:A′M=B′N;
②∵A′M+3B′N=2,
∴A′M=B′N=,
∵B(,)到y轴的距离为,点O是y轴与二次函数y=x2+2x的图象的交点,
∴平移后点O的对应点即为点Q,
∵二次函数y=x2+2x的图象的顶点为(﹣1,﹣1),二次函数y=(x﹣t)2+2的图象的顶点为(t,2),
∴新二次函数的图象是由原二次函数的图象向右平移(t+1)个单位,向上平移3个单位得到的,
∴Q(t+1,3),将点Q的坐标代入y=x+1,
得:3=(t+1)+1,
解得:t=3;
另解:
∵A′M+3B′N=2,
∴A′M=B′N=,B(,)的对应点为B′(t+,),
∵B′N=,
∴点Q的横坐标为t+1,代入y=x+1,得y=(t+1)+1=t+,
∴Q(t+1,t+),
将点Q的坐标代入y=(x﹣t)2+2中,得t+=(t+1﹣t)2+2,
解得:t=3.
方法二:
①设点Q的坐标为(x3,y3),由y3=x3+1,y3=(x3﹣t)2+2,得x3+1=(x3﹣t)2+2,
当t>时,解得:x3=,
∴点Q的横坐标为;
同理可得点P的横坐标为,
∵点P在点Q的左侧,
∴点P的横坐标为,点Q的横坐标为(t>).
∵二次函数y=x2+2x图象的顶点为(﹣1,﹣1),二次函数y=(x﹣t)2+2的图象的顶点为(t,2),
∴新二次函数的图象是由原二次函数的图象向右平移(t+1)个单位,向上平移3个单位得到的,
∴B(,)的对应点为B′(t+,),A(﹣2,0)的对应点为A′(t﹣1,3).
∴B′N=t+﹣=,A′M=﹣(t﹣1)=,
∴A′M=B′N.
②∵A′M+3B′N=2,
∴A′M=B′N=,
∴=,
解得:t=3.
3.(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(,)是函数y=x图象的“阶方点”;点(2,1)是函数y=图象的“2阶方点”.
(1)在①(﹣2,﹣);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y=图象的“1阶方点”的有 ②③ (填序号);
(2)若y关于x的一次函数y=ax﹣3a+1图象的“2阶方点”有且只有一个,求a的值;
(3)若y关于x的二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,请直接写出n的取值范围.
【解答】解:(1)①(﹣2,﹣)到两坐标轴的距离分别是2>1,<1,
∴(﹣2,﹣)不是反比例函数y=图象的“1阶方点”;
②(﹣1,﹣1)到两坐标轴的距离分别是1≤1,1≤1,
∴(﹣1,﹣1)是反比例函数y=图象的“1阶方点”;
③(1,1)到两坐标轴的距离分别是1≤1,1≤1,
∴(1,1)是反比例函数y=图象的“1阶方点”;
故答案为:②③;
(2)∵y=ax﹣3a+1=a(x﹣3)+1,
∴函数经过定点(3,1),
在以O为中心,边长为4的正方形ABCD中,当直线与正方形区域只有唯一交点时,图象的“2阶方点”有且只有一个,
由图可知,C(2,﹣2),D(2,2),
∵一次函数y=ax﹣3a+1图象的“2阶方点”有且只有一个,
当直线经过点C时,a=﹣1,此时图象的“2阶方点”有且只有一个,
当直线经过点D时,a=3,此时图象的“2阶方点”有且只有一个,
综上所述:a的值为3或a=﹣1;
(3)在以O为中心,边长为2n的正方形ABCD中,当抛物线与正方形区域有公共部分时,二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,
如图2,当n>0时,A(n,n),B(n,﹣n),C(﹣n,﹣n),D(﹣n,n),
当抛物线经过点D时,n=﹣1(舍)或n=;
当抛物线经过点B时,n=1;
∴≤n≤1时,二次函数y=﹣(x﹣n)2﹣2n+1图象有“n阶方点”;
综上所述:≤n≤1时,二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在.
4.(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:
x
…
﹣1
0
1
2
3
…
y
…
4
3
0
﹣5
﹣12
…
(1)求二次函数y=ax2+bx+3的表达式;
(2)将二次函数y=ax2+bx+3的图象向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图象,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y= y=﹣x2+6x﹣5(答案不唯一) ,实数k的取值范围是 4≤k≤5 ;
(3)A、B、C是二次函数y=ax2+bx+3的图象上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图象的对称轴对称,求∠ACB的度数.
【解答】解:(1)将(﹣1,4),(1,0)代入y=ax2+bx+3得:
,
解得,
∴二次函数的表达式为y=﹣x2﹣2x+3;
(2)如图:
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴将二次函数y=﹣x2﹣2x+3的图像向右平移k(k>0)个单位得y=﹣(x﹣k+1)2+4的图象,
∴新图象的对称轴为直线x=k﹣1,
∵当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,
∴3≤k﹣1≤4,
解得4≤k≤5,
∴符合条件的二次函数y=mx2+nx+q的表达式可以是y=﹣(x﹣3)2+4=﹣x2+6x﹣5,
故答案为:y=﹣x2+6x﹣5(答案不唯一),4≤k≤5;
(3)当B在C左侧时,过B作BH⊥AC于H,如图:
∵点A、B的横坐标分别是m、m+1,
∴yA=﹣m2﹣2m+3,yB=﹣(m+1)2﹣2(m+1)+3=﹣m2﹣4m,
∴A(m,﹣m2﹣2m+3),B(m+1,﹣m2﹣4m),
∵点C与点A关于该函数图像的对称轴对称,而抛物线对称轴为直线x=﹣1,
∴=﹣1,AC∥x轴,
∴xC=﹣2﹣m,
∴C(﹣2﹣m,﹣m2﹣2m+3),
过B作BH⊥AC于H,
∴BH=|﹣m2﹣4m﹣(﹣m2﹣2m+3)|=|﹣2m﹣3|,CH=|(﹣2﹣m)﹣(m+1)|=|﹣2m﹣3|,
∴BH=CH,
∴△BHC是等腰直角三角形,
∴∠HCB=45°,即∠ACB=45°,
当B在C右侧时,如图:
同理可得△BHC是等腰直角三角形,
∴∠ACB=180°﹣∠BCH=135°,
综上所述,∠ACB的度数是45°或135°.
5.(2022•泰州)如图,二次函数y1=x2+mx+1的图象与y轴相交于点A,与反比例函数y2=(x>0)的图象相交于点B(3,1).
(1)求这两个函数的表达式;
(2)当y1随x的增大而增大且y1<y2时,直接写出x的取值范围;
(3)平行于x轴的直线l与函数y1的图象相交于点C、D(点C在点D的左边),与函数y2的图象相交于点E.若△ACE与△BDE的面积相等,求点E的坐标.
【解答】解:(1)∵二次函数y1=x2+mx+1的图像与y轴相交于点A,与反比例函数y2=(x>0)的图像相交于点B(3,1),
∴32+3m+1=1,=1,
解得m=﹣3,k=3,
∴二次函数的解析式为y1=x2﹣3x+1,反比例函数的解析式为y2=(x>0);
(2)∵二次函数的解析式为y1=x2﹣3x+1,
∴对称轴为直线x=,
由图象知,当y1随x的增大而增大且y1<y2时,≤x<3;
(3)由题意作图如下:
∵当x=0时,y1=1,
∴A(0,1),
∵B(3,1),
∴△ACE的CE边上的高与△BDE的DE边上的高相等,
∵△ACE与△BDE的面积相等,
∴CE=DE,
即E点是二次函数的对称轴与反比例函数的交点,
当x=时,y2=2,
∴E(,2).
6.(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:
(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;
(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;
(3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.
【解答】解:(1)如图1,由题意得:A(﹣4,0),B(4,0),C(0,8),
设抛物线的解析式为:y=ax2+8,
把B(4,0)代入得:0=16a+8,
∴a=﹣,
∴抛物线的解析式为:y=﹣x2+8,
∵四边形EFGH是正方形,
∴GH=FG=2OG,
设H(t,﹣t2+8)(t>0),
∴﹣t2+8=2t,
解得:t1=﹣2+2,t2=﹣2﹣2(舍),
∴此正方形的面积=FG2=(2t)2=4t2=4(﹣2+2)2=(96﹣32)dm2;
(2)如图2,由(1)知:设H(t,﹣t2+8)(t>0),
∴矩形EFGH的周长=2FG+2GH=4t+2(﹣t2+8)=﹣t2+4t+16=﹣(t﹣2)2+20,
∵﹣1<0,
∴当t=2时,矩形EFGH的周长最大,且最大值是20dm;
(3)若切割成圆,能切得半径为3dm的圆,理由如下:
如图3,N为⊙M上一点,也是抛物线上一点,过N作⊙M的切线交y轴于Q,连接MN,过点N作NP⊥y轴于P,
则MN=OM=3,NQ⊥MN,
设N(m,﹣m2+8),
由勾股定理得:PM2+PN2=MN2,
∴m2+(﹣m2+8﹣3)2=32,
解得:m1=2,m2=﹣2(舍),
∴N(2,4),
∴PM=4﹣1=3,
∵cos∠NMP===,
∴MQ=3MN=9,
∴Q(0,12),
设QN的解析式为:y=kx+b,
∴,
∴,
∴QN的解析式为:y=﹣2x+12,
﹣x2+8=﹣2x+12,
x2﹣2x+4=0,
Δ=(﹣2)2﹣4××4=0,即此时N为圆M与抛物线在y轴右侧的唯一公共点,
∴若切割成圆,能切得半径为3dm的圆.
7.(2022•连云港)已知二次函数y=x2+(m﹣2)x+m﹣4,其中m>2.
(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;
(2)求证:二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;
(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=﹣x﹣2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.
【解答】(1)解:把O(0,0)代入y=x2+(m﹣2)x+m﹣4得:
m﹣4=0,
解得m=4,
∴y=x2+2x=(x+1)2﹣1,
∴函数图像的顶点A的坐标为(﹣1,﹣1);
(2)证明:由抛物线顶点坐标公式得y=x2+(m﹣2)x+m﹣4的顶点为(,),
∵m>2,
∴2﹣m<0,
∴<0,
∵=﹣(m﹣4)2﹣1≤﹣1<0,
∴二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;
(3)解:设平移后图像对应的二次函数表达式为y=x2+bx+c,其顶点为(﹣,),
当x=0时,B(0,c),
将(﹣,)代入y=﹣x﹣2得:
=﹣2,
∴c=,
∵B(0,c)在y轴的负半轴,
∴c<0,
∴OB=﹣c=﹣,
过点A作AH⊥OB于H,如图:
∵A(﹣1,﹣1),
∴AH=1,
在△AOB中,
S△AOB=OB•AH=×(﹣)×1=﹣b2﹣b+1=﹣(b+1)2+,
∵﹣<0,
∴当b=﹣1时,此时c<0,S△AOB取最大值,最大值为,
答:△AOB面积的最大值是.
8.(2021•淮安)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣3,0)和点B(5,0),顶点为点D,动点M、Q在x轴上(点M在点Q的左侧),在x轴下方作矩形MNPQ,其中MQ=3,MN=2.矩形MNPQ沿x轴以每秒1个单位长度的速度向右匀速运动,运动开始时,点M的坐标为(﹣6,0),当点M与点B重合时停止运动,设运动的时间为t秒(t>0).
(1)b= ,c= .
(2)连接BD,求直线BD的函数表达式.
(3)在矩形MNPQ运动的过程中,MN所在直线与该二次函数的图象交于点G,PQ所在直线与直线BD交于点H,是否存在某一时刻,使得以G、M、H、Q为顶点的四边形是面积小于10的平行四边形?若存在,求出t的值;若不存在,请说明理由.
(4)连接PD,过点P作PD的垂线交y轴于点R,直接写出在矩形MNPQ整个运动过程中点R运动的路径长.
【解答】解:(1)把A(﹣3,0)、B(5,0)代入y=x2+bx+c,
得,解得,
故答案为:,.
(2)∵y=x2x=(x﹣1)2﹣4,
∴该抛物线的顶点坐标为D(1,﹣4);
设直线BD的函数表达式为y=mx+n,
则,解得,
∴y=x﹣5.
(3)存在,如图1、图2.
由题意得,M(t﹣6,0),Q(t﹣3,0),
∴G(t﹣6,t2t+),H(t﹣3,t﹣8);
∵QM•QH<10,且QH≠0,点M、B重合时停止运动,
∴,解得<t≤11,且t≠8;
∵MG∥HQ,
∴当MG=HQ时,以G、M、H、Q为顶点的四边形是平行四边形,
∴|t2t+|=|t﹣8|;
由t2t+=t﹣8得,t2﹣18t+65=0,
解得,t1=5,t2=13(不符合题意,舍去);
由t2t+=﹣t+8得,t2﹣10t+1=0,
解得,t1=5+2,t2=5﹣2(不符合题意,舍去),
综上所述,t=5或t=5+2.
(4)由(2)得,抛物线y=x2x的对称轴为直线x=1,
过点P作直线x=1的垂线,垂足为点F,交y轴于点G,
如图3,点Q在y轴左侧,此时点R在点G的上方,
当点M的坐标为(﹣6,0)时,点R的位置最高,
此时点Q与点A重合,
∵∠PGR=∠DFP=90°,∠RPG=90°﹣∠FPD=∠PDF,
∴△PRG∽△DPF,
∴,
∴RG===6,
∴R(0,4);
如图4,为原图象的局部入大图,
当点Q在y轴右侧且在直线x=1左侧,此时点R的最低位置在点G下方,
由△PRG∽△DPF,
得,,
∴GR=;
设点Q的坐标为(r,0)(0<r<1),则P(r,﹣2),
∴GR==r2+r=(r﹣)2+,
∴当r=时,GR的最大值为,
∴R(0,);
如图5,为原图象的缩小图,
当点Q在直线x=1右侧,则点R在点G的上方,
当点M与点B重合时,点R的位置最高,
由△PRG∽△DPF,
得,,
∴GR===28,
∴R(0,26),
∴4++26+=,
∴点R运动路径的长为.
9.(2021•无锡)在平面直角坐标系中,O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,二次函数y=ax2+2x+c的图象过B、C两点,且与x轴交于另一点A,点M为线段OB上的一个动点,过点M作直线l平行于y轴交BC于点F,交二次函数y=ax2+2x+c的图象于点E.
(1)求二次函数的表达式;
(2)当以C、E、F为顶点的三角形与△ABC相似时,求线段EF的长度;
(3)已知点N是y轴上的点,若点N、F关于直线EC对称,求点N的坐标.
【解答】解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=3,
∴B(3,0),C(0,3),
把B(3,0),C(0,3)代入y=ax2+2x+c得:
,解得,
∴二次函数的表达式为y=﹣x2+2x+3;
(2)如图:
在y=﹣x2+2x+3中,令y=0得x=3或x=﹣1,
∴A(﹣1,0),
∵B(3,0),C(0,3),
∴OB=OC,AB=4,BC=3,
∴∠ABC=∠MFB=∠CFE=45°,
∴以C、E、F为顶点的三角形与△ABC相似,B和F为对应点,
设E(m,﹣m2+2m+3),则F(m,﹣m+3),
∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,CF==m,
①△ABC∽△CFE时,=,
∴=,
解得m=或m=0(舍去),
∴EF=,
②△ABC∽△EFC时,=,
∴=,
解得m=0(舍去)或m=,
∴EF=,
综上所述,EF=或.
(3)连接NE,如图:
∵点N、F关于直线EC对称,
∴∠NCE=∠FCE,CF=CN,
∵EF∥y轴,
∴∠NCE=∠CEF,
∴∠FCE=∠CEF,
∴CF=EF=CN,
由(2)知:
设E(m,﹣m2+2m+3),则F(m,﹣m+3),EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,CF==m,
∴﹣m2+3m=m,解得m=0(舍去)或m=3﹣,
∴CN=CF=m=3﹣2,
∴N(0,3+1).
10.(2021•盐城)学习了图形的旋转之后,小明知道,将点P绕着某定点A顺时针旋转一定的角度α,能得到一个新的点P′,经过进一步探究,小明发现,当上述点P在某函数图象上运动时,点P′也随之运动,并且点P′的运动轨迹能形成一个新的图形.
试根据下列各题中所给的定点A的坐标、角度α的大小来解决相关问题.
【初步感知】
如图1,设A(1,1),α=90°,点P是一次函数y=kx+b图象上的动点,已知该一次函数的图象经过点P1(﹣1,1).
(1)点P1旋转后,得到的点P1′的坐标为 (1,3) ;
(2)若点P′的运动轨迹经过点P2′(2,1),求原一次函数的表达式.
【深入感悟】
如图2,设A(0,0),α=45°,点P是反比例函数y=﹣(x<0)的图象上的动点,过点P′作二、四象限角平分线的垂线,垂足为M,求△OMP′的面积.
【灵活运用】
如图3,设A(1,﹣),α=60°,点P是二次函数y=x2+2x+7图象上的动点,已知点B(2,0)、C(3,0),试探究△BCP′的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.
【解答】解:【初步感知】
(1)如图1,∵P1(﹣1,1),A(1,1),
∴P1A∥x轴,P1A=2,
由旋转可得:P1′A∥y轴,P1′A=2,
∴P1′(1,3);
故答案为:(1,3);
(2)∵P2′(2,1),
由题意得P2(1,2),
∵P1(﹣1,1),P2(1,2)在原一次函数图象上,
∴设原一次函数解析式为y=kx+b,
则,
解得:,
∴原一次函数解析式为y=x+;
【深入感悟】
设双曲线与二、四象限角平分线交于N点,则:
,
解得:,
∴N(﹣1,1).
①当x≤﹣1时,
过点P作PQ⊥x轴于Q,连接AP,过点P′作P′M⊥AN于点M,如图2,
∵∠QAM=∠POP′=45°,
∴∠PAQ=∠P′AN,
∵P′M⊥AM,
∴∠P′MA=∠PQA=90°,
∴在△PQA和△P′MA中,
,
∴△PQA≌△P′MA(AAS),
∴S△P′MA=S△PQA==,
即S△OMP′=.
②当﹣1<x<0时,
过点P作PH⊥y轴于点H,过点P′作P′M⊥AN于点M,如图3,
∵∠POP′=NOH=45°,
∴∠PON=∠P′OH,
∴∠MP′O=90°﹣∠MOH﹣∠P′OH=45°﹣∠P′OH,
∵∠POH=∠POP′﹣∠P′OH=45°﹣∠P′OH,
∴∠POH=∠MP′O,
在△POH和△OP′M中,
,
∴△POH≌△OP′M(AAS),
∴S△P′MO=S△PHO==,
综上所述,△OMP′的面积为.
【灵活运用】
△BCP′的面积有最小值,
如图4,连接AB,AC,将B,C绕点A逆时针旋转60°得B′,C′,作AH⊥x轴于点H,
∵A(1,﹣),B(2,0),C(3,0),
∴OH=BH=1,BC=1,
∴OA=AB=OB=2,
∴△OAB为等边三角形,此时B′与O重合,即B′(0,0),
连接C′O,∵∠CAC′=∠BAB′=60°,
∴∠CAB=∠C′AB′,
在△C′AO和△CAB中,
,
∴△C′AO≌△CAB(SAS),
∴C′O=CB=1,∠C′OA=∠CBA=120°,
∴作C′G⊥y轴于G,
在Rt△C′GO中,∠C′OG=90°﹣∠C′B′C=30°,
∴C′G=OC′=,
∴OG=,
∴C′(,),此时OC′的函数表达式为:y=x,
设过P且与B′C′平行的直线l解析式为y=x+b,
∵S△BCP′=S△B′C′P,
∴当直线l与抛物线相切时取最小值,
则,
即x+b=x2+2x+7,
∴x2+x+7﹣b=0,
当Δ=0时,得b=,
∴y=x+,
设l与y轴交于点T,连接C′T,
∵S△B′C′T=S△BCP′,
∴S△BCP′=×B′T×C′G=××=.
11.(2021•苏州)如图,二次函数y=x2﹣(m+1)x+m(m是实数,且﹣1<m<0)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴与x轴交于点C.已知点D位于第一象限,且在对称轴上,OD⊥BD,点E在x轴的正半轴上,OC=EC,连接ED并延长交y轴于点F,连接AF.
(1)求A、B、C三点的坐标(用数字或含m的式子表示);
(2)已知点Q在抛物线的对称轴上,当△AFQ的周长的最小值等于时,求m的值.
【解答】解:(1)令y=x2﹣(m+1)x+m=0,解得x=1或m,
故点A、B的坐标分别为(m,0)、(1,0),
则点C的横坐标为(m+1),即点C的坐标为(,0);
(2)由点C的坐标知,CO==CE,
故BC=OB﹣CO=1﹣(m+1)=,
∵∠BDC+∠DBC=90°,∠BDC+∠ODC=90°,
∴∠DBC=∠ODC,
∴tan∠DBC=tan∠ODC,即CD2=CO•BC=(m+1)(1﹣m)=,
∵点C是OE中点,则CD为三角形EOF的中位线,
则FO2=(2CD)2=4CD2=1﹣m2,
在Rt△AOF中,AF2=AO2+OF2=m2+1﹣m2=1,
∵点B是点A关于函数对称轴的对称点,连接FB交对称轴于点Q,则点Q为所求点,
理由:△AFQ的周长=AF+FQ+AQ=1+QF+BQ=1+BF为最小,
即1+BF=,
则BF2=OF2+OB2=1﹣m2+1=(﹣1)2,解得m=,
∵﹣1<m<0,
故m=﹣.
12.(2021•扬州)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C.
(1)b= ﹣2 ,c= ﹣3 ;
(2)若点D在该二次函数的图象上,且S△ABD=2S△ABC,求点D的坐标;
(3)若点P是该二次函数图象上位于x轴上方的一点,且S△APC=S△APB,直接写出点P的坐标.
【解答】解:(1)∵点A和点B在二次函数y=x2+bx+c图象上,
则,解得:,
故答案为:﹣2,﹣3;
(2)连接BC,由题意可得:
A(﹣1,0),B(3,0),C(0,﹣3),y=x2﹣2x﹣3,
∴S△ABC==6,
∵S△ABD=2S△ABC,设点D(m,m2﹣2m﹣3),
∴|yD|=2×6,即×4×|m2﹣2m﹣3|=2×6,
解得:m=或,代入y=x2﹣2x﹣3,
可得:y值都为6,
∴D(,6)或(,6);
(3)设P(n,n2﹣2n﹣3),
∵点P在抛物线位于x轴上方的部分,
∴n<﹣1或n>3,
当点P在点A左侧时,即n<﹣1,
可知点C到AP的距离小于点B到AP的距离,
∴S△APC<S△APB,不成立;
当点P在点B右侧时,即n>3,
∵△APC和△APB都以AP为底,若要面积相等,
则点B和点C到AP的距离相等,即BC∥AP,
设直线BC的解析式为y=kx+p,
则,解得:,
则设直线AP的解析式为y=x+q,将点A(﹣1,0)代入,
则﹣1+q=0,解得:q=1,
则直线AP的解析式为y=x+1,将P(n,n2﹣2n﹣3)代入,
即n2﹣2n﹣3=n+1,
解得:n=4或n=﹣1(舍),
n2﹣2n﹣3=5,
∴点P的坐标为(4,5).
13.(2020•无锡)已知二次函数y=ax2﹣4ax+1的图象与x轴仅有一个公共点A.
(1)求a的值;
(2)设该二次函数图象与y轴交于点B,点C为直线AB下方抛物线上的一个动点,点C运动到何处时,△ABC面积最大?请求出此时C点的坐标.
(3)过点(0,﹣1)作直线l平行于x轴,在抛物线上任取一点D(A点除外),过点D向直线l作垂线,垂足为E点,若在抛物线的对称轴上存在一点P,使得△PDE始终为等腰三角形.请你猜测点P的坐标,并给出证明过程.
猜测:点P的坐标为 (2,1) .
证明:
【解答】解:(1)函数图象与x轴只有一个公共点,所以△=O,
即(﹣4a)2﹣4a=0,
16a2﹣4a=0,
4a(4a﹣1)=0,
∴a1=0,a2=,
当a=0时,y=1不是二次函数(舍去),
当a=时,y=x2﹣x+1符合,
∴a=;
(2)∵C在抛物线y=x2﹣x+1上,
∴设C(m,m2﹣m+1)(0<m<2),
∴S△ABC=S△AOB﹣S△BOC﹣S△AOC(由图可知),
令y=0,x2﹣x+1=0,
∴x=2,
∴A(2,0),
令x=0,y=1,
∴B(0,1),
∴S△AOB=2×1×=1.
S△BOC=1×m×=m,
S△AOC=2×(m2﹣m+1)×=m2﹣m+1,
∴S△ABC=S△AOB﹣S△BOC﹣S△AOC
=1﹣m﹣(m2﹣m+1)
=1﹣m﹣m2+m﹣1
=﹣m2+m
=﹣(m2﹣2m)
=﹣(m﹣1)2+
∴当m=1时,S△ABC最大,y=﹣1+1=,
此时C坐标为(1,);
(3)猜测:点P坐标(2,1),
﹣=2,
∴抛物线对称轴为直线x=2,
∴设点P(2,e),
∵点D在抛物线y=x2﹣x+1上,
∴设D(g,g2﹣g+1)(g≠2),
故E(g,﹣1),
∴PD=,
DE=,
=g2﹣g+2,
PE=,
∵△PDE为等腰三角形,
∴①PD=DE时,
即=g2﹣g+2,
两边平方得(g﹣2)2+(g2﹣g+1﹣e)2=(g2﹣g+2)2,
(g﹣2)2+(g2﹣g+1)2﹣2(g2﹣g+1)e+e2=(g2﹣g+1)2+1+2(g2﹣g+1)
(将g2﹣g+1看成一个整体),
(﹣e)g2+(2e﹣2)g+(e2﹣2e+1)=0,
(﹣e)g2+(2e﹣2)g+(e﹣1)2=0,
当e=1时,无论g取何值时,该式均成立,
此时P坐标为(2,1),
②PD=PE时,
即=,
两边平方得(g﹣2)2+(g2﹣g+1﹣e)2=(g﹣2)2+(﹣1﹣e)2,
∴(g2﹣g+1﹣e)2=(1+e)2,
(﹣1﹣e)2=(1+e)2,
∴(g2﹣g+1﹣e)2﹣(1+e)2=0,
(g2﹣g+1﹣e+1+e)(g2﹣g+1﹣e﹣1﹣e)=0,
∴(g2﹣g+2)(g2﹣g﹣2e)=0,
故无论e取什么值,都不能满足,
无论g取何值时,该式均成立,
故此种情况舍去,
③PE=DE时,
即=g2﹣g+2,
两边平方得,(g﹣2)2+(﹣1﹣e)2=(g2﹣g+2)2,
∴(1+e)2=(g2﹣g+2)2﹣(g﹣2)
=(g2﹣g+2+g﹣2)(g2﹣g+2﹣g+2)
=g2(g2﹣2g+4),
∴(1+e)2=g2(g2﹣2g+4),
故无论e取什么值,都不能满足,
无论g取何值时,该式均成立,
故此种情况舍去,
综上所述,当PD=DE时满足题意,
此时P坐标为(2,1).
14.(2020•镇江)如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN分别与x轴相交于A、B两点.
(1)当a=﹣1时,求点N的坐标及的值;
(2)随着a的变化,的值是否发生变化?请说明理由;
(3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式.
【解答】解:(1)分别过点M、N作MG⊥CD于点E,NT⊥DC于点T,
∵MG∥TN∥x轴,
∴△DMG∽△DAC,△DCB∽△DTN,
∴,=,
∵a=﹣1,则y=﹣x2+2x+c,
将M(﹣1,1)代入上式并解得:c=4,
∴抛物线的表达式为:y=﹣x2+2x+4,
则点D(1,5),N(4,﹣4),
则MG=2,DG=4,DC=5,TN=3,DT=9,
∴,解得:AC=,BC=,
∴=;
(2)不变,
理由:∵y=ax2﹣2ax+c过点M(﹣1,1),则a+2a+c=1,
解得:c=1﹣3a,
∴y=ax2﹣2ax+(1﹣3a),
∴点D(1,1﹣4a),N(4,1+5a),
∴MG=2,DG=﹣4a,DC=1﹣4a,TN=3,DT=﹣9a,
由(1)的结论得:AC=,BC=,
∴=;
(3)过点F作FH⊥x轴于点H,则FH∥l,则△FHE∽△DCE,
∵FB=FE,FH⊥BE,
∴BH=HE,
∵BC=2BE,
则CE=6HE,
∵CD=1﹣4a,
∴FH=,
∵BC=,
∴CH=×=,
∴F(﹣+1,﹣a),
将点F的坐标代入y=ax2﹣2ax+(1﹣3a)=a(x+1)(x﹣3)+1得:
﹣a=a(﹣+1+1)(﹣+1﹣3)+1,
解得:a=﹣或(舍弃),
经检验a=﹣,
故y=﹣x2+x+.
解法二:∵AC:BC=3:2,BC=2BE,
∴AC=CE,
∴AD与DE关于直线CD对称,
∵AD,DE交抛物线于M,F,
∴M,F关于直线CD对称,
∴F(3,1),
∴﹣a=1,
∴a=﹣.
故y=﹣x2+x+.
15.(2020•宿迁)二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E.
(1)求这个二次函数的表达式,并写出点E的坐标;
(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;
(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.
【解答】解:(1)将A(2,0),B(6,0)代入y=ax2+bx+3,
得,
解得
∴二次函数的解析式为y=﹣2x+3.
∵y=﹣1,
∴E(4,﹣1).
(2)如图1,图2,连接CB,CD,由点C在线段BD的垂直平分线CN上,得CB=CD.
设D(4,m),
∵C(0,3),由勾股定理可得:
42+(m﹣3)2=62+32.
解得m=3±.
∴满足条件的点D的坐标为(4,3+)或.
(3)如图3,设CQ交抛物线的对称轴于点M,
设P(n,﹣2n+3),则Q(),
设直线CQ的解析式为y=kx+3,则nk+3.
解得k=,于是CQ:y=()x+3,
当x=4时,y=4()+3=n﹣5﹣,
∴M(4,n﹣5﹣),ME=n﹣4﹣.
∵S△CQE=S△CEM+S△QEM=.
∴n2﹣4n﹣60=0,
解得n=10或n=﹣6,
当n=10时,P(10,8),当n=﹣6时,P(﹣6,24).
综合以上可得,满足条件的点P的坐标为(10,8)或(﹣6,24).
16.(2020•常州)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.
(1)填空:b= ﹣4 ;
(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;
(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.
【解答】解:(1)∵抛物线y=x2+bx+3的图象过点C(1,0),
∴0=1+b+3,
∴b=﹣4,
故答案为:﹣4;
(2)∵b=﹣4,
∴抛物线解析式为y=x2﹣4x+3
∵抛物线y=x2﹣4x+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,
∴点A(0,3),3=x2﹣4x+3,
∴x1=0(舍去),x2=4,
∴点B(4,3),
∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴顶点D坐标(2,﹣1),
如图1,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,
∵点A(0,3),点B(4,3),点C(1,0),CE⊥AB,
∴点E(1,3),CE=BE=3,AE=1,
∴∠EBC=∠ECB=45°,tan∠ACE=,
∴∠BCF=45°,
∵点B(4,3),点C(1,0),点D(2,﹣1),
∴BC==3,CD==,BD==2,
∵BC2+CD2=20=BD2,
∴∠BCD=90°,
∴tan∠DBC====tan∠ACE,
∴∠ACE=∠DBC,
∴∠ACE+∠ECB=∠DBC+∠BCF,
∴∠ACB=∠CFD,
又∵∠CQD=∠ACB,
∴点F与点Q重合,
∴点P是直线CF与抛物线的交点,
∴0=x2﹣4x+3,
∴x1=1,x2=3,
∴点P(3,0);
当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,
∵CH⊥DB,HF=QH,
∴CF=CQ,
∴∠CFD=∠CQD,
∴∠CQD=∠ACB,
∵CH⊥BD,
∵点B(4,3),点D(2,﹣1),
∴直线BD解析式为:y=2x﹣5,
∴点F(,0),
∴直线CH解析式为:y=﹣x+,
∴,
解得,
∴点H坐标为(,﹣),
∵FH=QH,
∴点Q(,﹣),
∴直线CQ解析式为:y=﹣x+,
联立方程组,
解得:或,
∴点P(,﹣);
综上所述:点P的坐标为(3,0)或(,﹣);
(3)如图,设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,
∵点A(0,3),点C(1,0),
∴直线AC解析式为:y=﹣3x+3,
∴,
∴,
∴点N坐标为(,﹣),
∵点H坐标为(,﹣),
∴CH2=(﹣1)2+()2=,HN2=(﹣)2+(﹣+)2=,
∴CH=HN,
∴∠CNH=45°,
∵点E关于直线BD对称的点为F,
∴EN=NF,∠ENB=∠FNB=45°,
∴∠ENF=90°,
∴∠ENM+∠FNM=90°,
又∵∠ENM+∠MEN=90°,
∴∠MEN=∠FNM,
∴△EMN≌△NKF(AAS)
∴EM=NK=,MN=KF,
∴点E的横坐标为﹣,
∴点E(﹣,),
∴MN==KF,
∴CF=+﹣1=6,
∵点F关于直线BC对称的点为G,
∴FC=CG=6,∠BCF=∠GCB=45°,
∴∠GCF=90°,
∴点G(1,6),
∴AG==.
相关试卷
这是一份第5章二次函数解答题-中档题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏),共27页。试卷主要包含了图象的顶点在y轴右侧,三点,对称轴是直线x=1等内容,欢迎下载使用。
这是一份第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江),共42页。试卷主要包含了,连接AD,BC,BD,,与y轴交于点C,综合与探究,,与x轴交于另一点B,顶点为D等内容,欢迎下载使用。
这是一份第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共35页。试卷主要包含了在x轴上方的抛物线对称轴上运动,,与y轴交于点C,,对称轴为直线x=2,,顶点为B等内容,欢迎下载使用。