![福建省三明市大田县重点达标名校2021-2022学年中考数学仿真试卷含解析第1页](http://m.enxinlong.com/img-preview/2/3/13517147/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![福建省三明市大田县重点达标名校2021-2022学年中考数学仿真试卷含解析第2页](http://m.enxinlong.com/img-preview/2/3/13517147/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![福建省三明市大田县重点达标名校2021-2022学年中考数学仿真试卷含解析第3页](http://m.enxinlong.com/img-preview/2/3/13517147/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
福建省三明市大田县重点达标名校2021-2022学年中考数学仿真试卷含解析
展开
这是一份福建省三明市大田县重点达标名校2021-2022学年中考数学仿真试卷含解析,共23页。试卷主要包含了计算的值,下列二次根式,最简二次根式是,一次函数y=kx+k,下列运算错误的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )
A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE
2.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.③④
3.计算的值( )
A.1 B. C.3 D.
4.下列二次根式,最简二次根式是( )
A. B. C. D.
5.若实数 a,b 满足|a|>|b|,则与实数 a,b 对应的点在数轴上的位置可以是( )
A. B. C. D.
6.对于代数式ax2+bx+c(a≠0),下列说法正确的是( )
①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)
②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c
③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
A.③ B.①③ C.②④ D.①③④
7.一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是( )
A. B. C. D.
8.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是( )
A.55×106 B.0.55×108 C.5.5×106 D.5.5×107
9.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为( )
A.﹣4 B.7﹣4 C.6﹣ D.
10.下列运算错误的是( )
A.(m2)3=m6 B.a10÷a9=a C.x3•x5=x8 D.a4+a3=a7
二、填空题(本大题共6个小题,每小题3分,共18分)
11.用科学计数器计算:2×sin15°×cos15°= _______(结果精确到0.01).
12.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_____________.
13.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= ▲ °.
14.如果,那么=_____.
15.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2__S乙2(填“>”、“=”、“<”)
16.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.
三、解答题(共8题,共72分)
17.(8分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)
18.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:
(1)请用t分别表示A、B的路程sA、sB;
(2)在A出发后几小时,两人相距15km?
19.(8分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
(1)求抛物线的表达式;
(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
(3)如图2,连接BC,PB,PC,设△PBC的面积为S.
①求S关于t的函数表达式;
②求P点到直线BC的距离的最大值,并求出此时点P的坐标.
20.(8分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(≈1.732,结果精确到0.1m).
21.(8分)如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y= x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
22.(10分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.求双曲线解析式;点P在x轴上,如果△ACP的面积为5,求点P的坐标.
23.(12分)如图,平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,与反比例函数的图象交于点.
求反比例函数的表达式;
若点C在反比例函数的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.
24.如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.在图①中,若EG=4,GF=6,求正方形ABCD的边长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.
点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.
2、B
【解析】
由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.
【详解】
解:设AD=x,AB=2x
∵四边形ABCD是矩形
∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB
∴BC=x,CD=2x
∵CP:BP=1:2
∴CP=x,BP=x
∵E为DC的中点,
∴CE=CD=x,
∴tan∠CEP==,tan∠EBC==
∴∠CEP=30°,∠EBC=30°
∴∠CEB=60°
∴∠PEB=30°
∴∠CEP=∠PEB
∴EP平分∠CEB,故①正确;
∵DC∥AB,
∴∠CEP=∠F=30°,
∴∠F=∠EBP=30°,∠F=∠BEF=30°,
∴△EBP∽△EFB,
∴
∴BE·BF=EF·BP
∵∠F=∠BEF,
∴BE=BF
∴=PB·EF,故②正确
∵∠F=30°,
∴PF=2PB=x,
过点E作EG⊥AF于G,
∴∠EGF=90°,
∴EF=2EG=2x
∴PF·EF=x·2x=8x2
2AD2=2×(x)2=6x2,
∴PF·EF≠2AD2,故③错误.
在Rt△ECP中,
∵∠CEP=30°,
∴EP=2PC=x
∵tan∠PAB==
∴∠PAB=30°
∴∠APB=60°
∴∠AOB=90°
在Rt△AOB和Rt△POB中,由勾股定理得,
AO=x,PO=x
∴4AO·PO=4×x·x=4x2
又EF·EP=2x·x=4x2
∴EF·EP=4AO·PO.故④正确.
故选,B
【点睛】
本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.
3、A
【解析】
根据有理数的加法法则进行计算即可.
【详解】
故选:A.
【点睛】
本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.
4、C
【解析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、被开方数含开的尽的因数,故A不符合题意;
B、被开方数含分母,故B不符合题意;
C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;
D、被开方数含能开得尽方的因数或因式,故D不符合题意.
故选C.
【点睛】
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
5、D
【解析】
根据绝对值的意义即可解答.
【详解】
由|a|>|b|,得a与原点的距离比b与原点的距离远, 只有选项D符合,故选D.
【点睛】
本题考查了实数与数轴,熟练运用绝对值的意义是解题关键.
6、A
【解析】
设
(1)如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故①中结论不一定成立;
(2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故②错误;
(3)如果ac<0,则b2-4ac>0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c,故③在结论正确;
(4)如果ac>0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以④中结论不一定成立.
综上所述,四种说法中正确的是③.
故选A.
7、C
【解析】
A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故选项错误; B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故选项错误,
故选C.
8、D
【解析】
试题解析:55000000=5.5×107,
故选D.
考点:科学记数法—表示较大的数
9、A
【解析】
∵O的直径AB=2,
∴∠C=90°,
∵C是弧AB的中点,
∴,
∴AC=BC,
∴∠CAB=∠CBA=45°,
∵AE,BE分别平分∠BAC和∠ABC,
∴∠EAB=∠EBA=22.5°,
∴∠AEB=180°− (∠BAC+∠CBA)=135°,
连接EO,
∵∠EAB=∠EBA,
∴EA=EB,
∵OA=OB,
∴EO⊥AB,
∴EO为Rt△ABC内切圆半径,
∴S△ABC=(AB+AC+BC)⋅EO=AC⋅BC,
∴EO=−1,
∴AE2=AO2+EO2=12+(−1)2=4−2,
∴扇形EAB的面积==,△ABE的面积=AB⋅EO=−1,
∴弓形AB的面积=扇形EAB的面积−△ABE的面积=,
∴阴影部分的面积=O的面积−弓形AB的面积=−()=−4,
故选:A.
10、D
【解析】
【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.
【详解】A、(m2)3=m6,正确;
B、a10÷a9=a,正确;
C、x3•x5=x8,正确;
D、a4+a3=a4+a3,错误,
故选D.
【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、0.50
【解析】
直接使用科学计算器计算即可,结果需保留二位有效数字.
【详解】
用科学计算器计算得0.5,
故填0.50,
【点睛】
此题主要考查科学计算器的使用,注意结果保留二位有效数字.
12、100(1+x)2=121
【解析】
根据题意给出的等量关系即可求出答案.
【详解】
由题意可知:100(1+x)2=121
故答案为:100(1+x)2=121
【点睛】
本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型.
13、1.
【解析】
试题分析:∵四边形OABC为平行四边形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四边形ABCD是圆的内接四边形,∴∠D+∠B=180°.又∠D=∠AOC,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB)=31°-(1°+120°+1°+1°)=1°.故答案为1°.
考点:①平行四边形的性质;②圆内接四边形的性质.
14、
【解析】
试题解析:
设a=2t,b=3t,
故答案为:
15、>
【解析】
要比较甲、乙方差的大小,就需要求出甲、乙的方差;
首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;
接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.
【详解】
甲组的平均数为:=4,
S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,
乙组的平均数为: =4,
S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,
∵>,
∴S甲2>S乙2.
故答案为:>.
【点睛】
本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.
16、1
【解析】
根据垂径定理求得BD,然后根据勾股定理求得即可.
【详解】
解:∵OD⊥BC,
∴BD=CD=BC=3,
∵OB=AB=5,
∴在Rt△OBD中,OD==1.
故答案为1.
【点睛】
本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.
三、解答题(共8题,共72分)
17、29.8米.
【解析】
作,,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度.
【详解】
解:如图,作,,
由题意得:
米,
米,
则米,
答:这架无人飞机的飞行高度为米.
【点睛】
此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.
18、(1)sA=45t﹣45,sB=20t;(2)在A出发后小时或小时,两人相距15km.
【解析】
(1)根据函数图象中的数据可以分别求得s与t的函数关系式;
(2)根据(1)中的函数解析式可以解答本题.
【详解】
解:(1)设sA与t的函数关系式为sA=kt+b,
,得,
即sA与t的函数关系式为sA=45t﹣45,
设sB与t的函数关系式为sB=at,
60=3a,得a=20,
即sB与t的函数关系式为sB=20t;
(2)|45t﹣45﹣20t|=15,
解得,t1=,t2=,
,,
即在A出发后小时或小时,两人相距15km.
【点睛】
本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键.
19、(1)y=﹣x2+2x+1.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(1)y=﹣x+1;P点到直线BC的距离的最大值为,此时点P的坐标为(,).
【解析】
【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;
(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;
(1)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;
②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.
【详解】(1)将A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,
得,解得:,
∴抛物线的表达式为y=﹣x2+2x+1;
(2)在图1中,连接PC,交抛物线对称轴l于点E,
∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,
∴抛物线的对称轴为直线x=1,
当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,
∵抛物线的表达式为y=﹣x2+2x+1,
∴点C的坐标为(0,1),点P的坐标为(2,1),
∴点M的坐标为(1,6);
当t≠2时,不存在,理由如下:
若四边形CDPM是平行四边形,则CE=PE,
∵点C的横坐标为0,点E的横坐标为0,
∴点P的横坐标t=1×2﹣0=2,
又∵t≠2,
∴不存在;
(1)①在图2中,过点P作PF∥y轴,交BC于点F.
设直线BC的解析式为y=mx+n(m≠0),
将B(1,0)、C(0,1)代入y=mx+n,
得,解得:,
∴直线BC的解析式为y=﹣x+1,
∵点P的坐标为(t,﹣t2+2t+1),
∴点F的坐标为(t,﹣t+1),
∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,
∴S=PF•OB=﹣t2+t=﹣(t﹣)2+;
②∵﹣<0,
∴当t=时,S取最大值,最大值为.
∵点B的坐标为(1,0),点C的坐标为(0,1),
∴线段BC=,
∴P点到直线BC的距离的最大值为,
此时点P的坐标为(,).
【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(1)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.
20、大型标牌上端与下端之间的距离约为3.5m.
【解析】
试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE的长,用CE的长减去DE的长即可得到上端和下端之间的距离.
试题解析:
设AB,CD 的延长线相交于点E,
∵∠CBE=45°,
CE⊥AE,
∴CE=BE,
∵CE=16.65﹣1.65=15,
∴BE=15,
而AE=AB+BE=1.
∵∠DAE=30°,
∴DE==11.54,
∴CD=CE﹣DE=15﹣11.54≈3.5 (m ),
答:大型标牌上端与下端之间的距离约为3.5m.
21、(1)n=2;y=x2﹣x﹣1;(2)p=;当t=2时,p有最大值;(3)6个,或;
【解析】
(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;
(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;
(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,根据图3、图4两种情形即可解决.
【详解】
解:
(1)∵直线l:y=x+m经过点B(0,﹣1),
∴m=﹣1,
∴直线l的解析式为y=x﹣1,
∵直线l:y=x﹣1经过点C(4,n),
∴n=×4﹣1=2,
∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),
∴,
解得,
∴抛物线的解析式为y=x2﹣x﹣1;
(2)令y=0,则x﹣1=0,
解得x=,
∴点A的坐标为(,0),
∴OA=,
在Rt△OAB中,OB=1,
∴AB===,
∵DE∥y轴,
∴∠ABO=∠DEF,
在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,
DF=DE•sin∠DEF=DE•=DE,
∴p=2(DF+EF)=2(+)DE=DE,
∵点D的横坐标为t(0<t<4),
∴D(t, t2﹣t﹣1),E(t, t﹣1),
∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,
∴p=×(﹣t2+2t)=﹣t2+t,
∵p=﹣(t﹣2)2+,且﹣<0,
∴当t=2时,p有最大值.
(3)“落点”的个数有6个,如图1,图2中各有2个,图3,图4各有一个所示.
如图3中,设A1的横坐标为m,则O1的横坐标为m+,
∴m2﹣m﹣1=(m+)2﹣(m+)﹣1,
解得m=,
如图4中,设A1的横坐标为m,则B1的横坐标为m+,B1的纵坐标比例A1的纵坐标大1,
∴m2﹣m﹣1+1=(m+)2﹣(m+)﹣1,
解得m=,
∴旋转180°时点A1的横坐标为或
【点睛】
本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式,锐角三角函数,长方形的周长公式,以及二次函数的最值问题,本题难点在于(3)根据旋转角是90°判断出A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,解题时注意要分情况讨论.
22、(1);(2)(,0)或
【解析】
(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
(2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.
【详解】
解:(1)把A(2,n)代入直线解析式得:n=3,
∴A(2,3),
把A坐标代入y=,得k=6,
则双曲线解析式为y=.
(2)对于直线y=x+2,
令y=0,得到x=-4,即C(-4,0).
设P(x,0),可得PC=|x+4|.
∵△ACP面积为5,
∴|x+4|•3=5,即|x+4|=2,
解得:x=-或x=-,
则P坐标为或.
23、(1)y= (1)(1,0)
【解析】
(1)将点M的坐标代入一次函数解析式求得a的值;然后将点M的坐标代入反比例函数解析式,求得k的值即可;
(1)根据平行四边形的性质得到BC∥AD且BD=AD,结合图形与坐标的性质求得点D的坐标.
【详解】
解:(1)∵点M(a,4)在直线y=1x+1上,
∴4=1a+1,
解得a=1,
∴M(1,4),将其代入y=得到:k=xy=1×4=4,
∴反比例函数y=(x>0)的表达式为y=;
(1)∵平面直角坐标系中,直线y=1x+1与x轴,y轴分别交于A,B两点,
∴当x=0时,y=1.
当y=0时,x=﹣1,
∴B(0,1),A(﹣1,0).
∵BC∥AD,
∴点C的纵坐标也等于1,且点C在反比例函数图象上,
将y=1代入y=,得1=,
解得x=1,
∴C(1,1).
∵四边形ABCD是平行四边形,
∴BC∥AD且BD=AD,
由B(0,1),C(1,1)两点的坐标知,BC∥AD.
又BC=1,
∴AD=1,
∵A(﹣1,0),点D在点A的右侧,
∴点D的坐标是(1,0).
【点睛】
考查了反比例函数与一次函数交点问题.熟练掌握平行四边形的性质和函数图象上点的坐标特征是解决问题的关键,难度适中.
24、 (1) 45°.(1) MN1=ND1+DH1.理由见解析;(3)11.
【解析】
(1)先根据AG⊥EF得出△ABE和△AGE是直角三角形,再根据HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出结论;
(1)由旋转的性质得出∠BAM=∠DAH,再根据SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根据勾股定理即可得出结论;(3)设正方形ABCD的边长为x,则CE=x-4,CF=x-2,再根据勾股定理即可得出x的值.
【详解】
解:(1)在正方形ABCD中,∠B=∠D=90°,
∵AG⊥EF,
∴△ABE和△AGE是直角三角形.
在Rt△ABE和Rt△AGE中,
,
∴△ABE≌△AGE(HL),
∴∠BAE=∠GAE.
同理,∠GAF=∠DAF.
∴∠EAF=∠EAG+∠FAG=∠BAD=45°.
(1)MN1=ND1+DH1.
由旋转可知:∠BAM=∠DAH,
∵∠BAM+∠DAN=45°,
∴∠HAN=∠DAH+∠DAN=45°.
∴∠HAN=∠MAN.
在△AMN与△AHN中,
,
∴△AMN≌△AHN(SAS),
∴MN=HN.
∵∠BAD=90°,AB=AD,
∴∠ABD=∠ADB=45°.
∴∠HDN=∠HDA+∠ADB=90°.
∴NH1=ND1+DH1.
∴MN1=ND1+DH1.
(3)由(1)知,BE=EG=4,DF=FG=2.
设正方形ABCD的边长为x,则CE=x-4,CF=x-2.
∵CE1+CF1=EF1,
∴(x-4)1+(x-2)1=101.
解这个方程,得x1=11,x1=-1(不合题意,舍去).
∴正方形ABCD的边长为11.
【点睛】
本题考查的是几何变换综合题,涉及到三角形全等的判定与性质、勾股定理、正方形的性质等知识,难度适中.
相关试卷
这是一份青岛市重点达标名校2021-2022学年中考数学仿真试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,有一组数据,下列命题中真命题是,点M等内容,欢迎下载使用。
这是一份河南省临颍县重点达标名校2021-2022学年中考数学仿真试卷含解析,共17页。试卷主要包含了下列运算中正确的是等内容,欢迎下载使用。
这是一份2021-2022学年安徽省来安县重点达标名校中考数学仿真试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果为,a、b是实数,点A等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)