搜索
    上传资料 赚现金
    英语朗读宝

    2022年陕西省定边县中考数学押题卷含解析

    2022年陕西省定边县中考数学押题卷含解析第1页
    2022年陕西省定边县中考数学押题卷含解析第2页
    2022年陕西省定边县中考数学押题卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年陕西省定边县中考数学押题卷含解析

    展开

    这是一份2022年陕西省定边县中考数学押题卷含解析,共21页。试卷主要包含了一、单选题等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,某计算机中有、、三个按键,以下是这三个按键的功能.
    (1).:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1.
    (2).:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2.
    (3).:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成3.
    若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少(  )

    A.0.01 B.0.1 C.10 D.100
    2.如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是(  )

    A.30° B.60° C.90° D.45°
    3.一次函数的图象上有点和点,且,下列叙述正确的是  
    A.若该函数图象交y轴于正半轴,则
    B.该函数图象必经过点
    C.无论m为何值,该函数图象一定过第四象限
    D.该函数图象向上平移一个单位后,会与x轴正半轴有交点
    4.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是(  )
    A. B.
    C. D.
    5.一、单选题
    在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的(  )
    A.平均数 B.众数 C.中位数 D.方差
    6.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有()
    A.180人 B.117人 C.215人 D.257人
    7.将一次函数的图象向下平移2个单位后,当时,的取值范围是( )
    A. B. C. D.
    8.函数与在同一坐标系中的大致图象是( )
    A、  B、 C、 D、
    9.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的( )
    A.中位数相等 B.平均数不同 C.A组数据方差更大 D.B组数据方差更大
    10.如图,在5×5的方格纸中将图①中的图形N平移到如图②所示的位置,那么下列平移正确的是( )

    A.先向下移动1格,再向左移动1格 B.先向下移动1格,再向左移动2格
    C.先向下移动2格,再向左移动1格 D.先向下移动2格,再向左移动2格
    11.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )
    A. B. C. D.
    12. “辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为
    A.675×102 B.67.5×102 C.6.75×104 D.6.75×105
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数共占总天数的百分比为______%.

    14.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为_____.

    15.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.
    16.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是____.

    17.如图,以原点O为圆心的圆交X轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD= .
    18.已知且,则=__________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.

    求证:(1)AE=BF;(2)AE⊥BF.
    20.(6分)已知关于的方程有两个实数根.求的取值范围;若,求的值;
    21.(6分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.求二次函数y=ax2+2x+c的表达式;连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.

    22.(8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.

    (1)求证:四边形BCFE是菱形;
    (2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
    23.(8分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.
    (1)请写出两个“关于轴对称的二次函数”;
    (2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).
    24.(10分)如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.

    25.(10分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.

    26.(12分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.
    27.(12分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标
    画树状图列表,写出点M所有可能的坐标;
    求点在函数的图象上的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据题中的按键顺序确定出显示的数即可.
    【详解】
    解:根据题意得: =40,
    =0.4,
    0.42=0.04,
    =0.4,
    =40,
    402=400,
    400÷6=46…4,
    则第400次为0.4.
    故选B.
    【点睛】
    此题考查了计算器﹣数的平方,弄清按键顺序是解本题的关键.
    2、B
    【解析】
    【分析】欲求∠BOC,又已知一圆周角∠BAC,可利用圆周角与圆心角的关系求解.
    【详解】∵∠BAC=30°,
    ∴∠BOC=2∠BAC =60°(同弧所对的圆周角是圆心角的一半),
    故选B.
    【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    3、B
    【解析】
    利用一次函数的性质逐一进行判断后即可得到正确的结论.
    【详解】
    解:一次函数的图象与y轴的交点在y轴的正半轴上,则,,若,则,故A错误;
    把代入得,,则该函数图象必经过点,故B正确;
    当时,,,函数图象过一二三象限,不过第四象限,故C错误;
    函数图象向上平移一个单位后,函数变为,所以当时,,故函数图象向上平移一个单位后,会与x轴负半轴有交点,故D错误,
    故选B.
    【点睛】
    本题考查了一次函数图象上点的坐标特征、一次函数图象与几何变换,解题的关键是熟练掌握一次函数的性质,灵活应用这些知识解决问题,属于中考常考题型.
    4、D
    【解析】
    根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
    【详解】
    解:A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、是中心对称图形,故此选项正确;
    故选:D.
    【点睛】
    此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.
    5、C
    【解析】
    由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.
    【详解】
    由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.
    故选C.
    【点睛】
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    6、B
    【解析】
    设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.
    【详解】
    设男生为x人,则女生有65%x人,由题意得,
    x+65%x=297,
    解之得
    x=180,
    297-180=117人.
    故选B.
    【点睛】
    本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键.
    7、C
    【解析】
    直接利用一次函数平移规律,即k不变,进而利用一次函数图象的性质得出答案.
    【详解】
    将一次函数向下平移2个单位后,得:

    当时,则:

    解得:,
    当时,,
    故选C.
    【点睛】
    本题主要考查了一次函数平移,解一元一次不等式,正确利用一次函数图象上点的坐标性质得出是解题关键.
    8、D.
    【解析】
    试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:
    当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;
    当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.
    故选D.
    考点:一次函数和反比例函数的图象.
    9、D
    【解析】
    分别求出两组数据的中位数、平均数、方差,比较即可得出答案.
    【详解】
    A组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4,
    方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷5=2;
    B组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4,
    方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷5=12;
    ∴两组数据的中位数不相等,平均数相等,B组方差更大.
    故选D.
    【点睛】
    本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键.
    10、C
    【解析】
    根据题意,结合图形,由平移的概念求解.
    【详解】
    由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.
    【点睛】
    本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.
    11、B
    【解析】
    试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是.
    故选B.
    考点:概率.
    12、C
    【解析】
    根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).
    【详解】
    67500一共5位,从而67500=6.75×104,
    故选C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、80
    【解析】
    【分析】先求出AQI在0~50的频数,再根据%,求出百分比.
    【详解】由图可知AQI在0~50的频数为10,
    所以,空气质量类别为优和良的天数共占总天数的百分比为:%=80%..
    故答案为80
    【点睛】本题考核知识点:数据的分析.解题关键点:从统计图获取信息,熟记百分比计算方法.
    14、或1
    【解析】
    图1,∠B’MC=90°,B’与点A重合,M是BC的中点,所以BM=,
    图2,当∠MB’C=90°,∠A=90°,AB=AC,
    ∠C=45°,
    所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,
    所以BM=1.


    【详解】
    请在此输入详解!
    15、37
    【解析】
    根据题意列出一元一次方程即可求解.
    【详解】
    解:设十位上的数字为a,则个位上的数为(a+4),依题意得:
    a+a+4=10,
    解得:a=3,
    ∴这个两位数为:37
    【点睛】
    本题考查了一元一次方程的实际应用,属于简单题,找到等量关系是解题关键.
    16、
    【解析】
    根据点E、F在边AB、AC上,可知当点E与点B重合时,CP有最小值,当点F与点C重合时CP有最大值,根据分析画出符合条件的图形即可得.
    【详解】
    如图,当点E与点B重合时,CP的值最小,

    此时BP=AB=3,所以PC=BC-BP=4-3=1,
    如图,当点F与点C重合时,CP的值最大,

    此时CP=AC,
    Rt△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,
    所以线段CP长的取值范围是1≤CP≤5,
    故答案为1≤CP≤5.
    【点睛】
    本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.
    17、65°
    【解析】
    解:由题意分析之,得出弧BD对应的圆周角是∠DAB,
    所以,=40°,由此则有:∠OCD=65°
    考点:本题考查了圆周角和圆心角的关系
    点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要对圆心角、弧、弦等的基本性质要熟练把握
    18、
    【解析】
    分析:根据相似三角形的面积比等于相似比的平方求解即可.
    详解:∵△ABC∽△A′B′C′,
    ∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,
    ∴AB:A′B′=1:.
    点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、见解析
    【解析】
    (1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;
    (2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF
    【详解】
    解:(1)证明:在△AEO与△BFO中,
    ∵Rt△OAB与Rt△EOF等腰直角三角形,
    ∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,
    ∴△AEO≌△BFO,
    ∴AE=BF;
    ( 2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO

    由(1)知:∠OAC=∠OBF,
    ∴∠BDA=∠AOB=90°,
    ∴AE⊥BF.
    20、(1);(2)k=-3
    【解析】
    (1)依题意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依题意x1+x2=2(k-1),x1·x2=k2
    以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1;②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);
    【详解】
    解:(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0
    解得
    (2)依题意x1+x2=2(k-1),x1·x2=k2
    以下分两种情况讨论:
    ①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1
    解得k1=k2=1

    ∴k1=k2=1不合题意,舍去
    ②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)
    解得k1=1,k2=-3

    ∴k=-3
    综合①、②可知k=-3
    【点睛】
    一元二次方程根与系数关系,根判别式.
    21、(1)y=﹣x2+2x+3(2)(,)(3)当点P的坐标为(,)时,四边形ACPB的最大面积值为
    【解析】
    (1)根据待定系数法,可得函数解析式;
    (2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;
    (3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.
    【详解】
    (1)将点B和点C的坐标代入函数解析式,得

    解得
    二次函数的解析式为y=﹣x2+2x+3;
    (2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,
    如图1,连接PP′,则PE⊥CO,垂足为E,

    ∵C(0,3),

    ∴点P的纵坐标,
    当时,即
    解得(不合题意,舍),
    ∴点P的坐标为
    (3)如图2,

    P在抛物线上,设P(m,﹣m2+2m+3),
    设直线BC的解析式为y=kx+b,
    将点B和点C的坐标代入函数解析式,得

    解得
    直线BC的解析为y=﹣x+3,
    设点Q的坐标为(m,﹣m+3),
    PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.
    当y=0时,﹣x2+2x+3=0,
    解得x1=﹣1,x2=3,
    OA=1,

    S四边形ABPC=S△ABC+S△PCQ+S△PBQ



    当m=时,四边形ABPC的面积最大.
    当m=时,,即P点的坐标为
    当点P的坐标为时,四边形ACPB的最大面积值为.
    【点睛】
    本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.
    22、(1)见解析;(2)见解析
    【解析】
    (1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形.
    (2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.
    【详解】
    解:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.
    又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.
    ∴四边形BCFE是平行四边形.
    又∵BE=FE,∴四边形BCFE是菱形.
    (2)∵∠BCF=120°,∴∠EBC=60°.
    ∴△EBC是等边三角形.
    ∴菱形的边长为4,高为.
    ∴菱形的面积为4×=.
    23、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为
    【解析】
    (1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;
    (2)根据函数的特点得出a=m,--=0, ,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标.
    【详解】
    解:(1)答案不唯一,如;
    (2)∵y1=ax2+bx+c和y2=mx2+nx+p是“关于y轴对称的二次函数”,
    即a=m,--=0,,
    整理得m=a,n=-b,p=c,
    则y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,
    ∴函数y1+y2的顶点坐标为(0,2c).
    【点睛】
    本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键.
    24、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)
    【解析】
    (1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;
    (1)先过点D作DH⊥x轴于点H,运用割补法即可得到:四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;
    (3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标.
    【详解】
    (1)∵A(﹣4,0)在二次函数y=ax1﹣x+1(a≠0)的图象上,
    ∴0=16a+6+1,
    解得a=﹣,
    ∴抛物线的函数解析式为y=﹣x1﹣x+1;
    ∴点C的坐标为(0,1),
    设直线AC的解析式为y=kx+b,则

    解得,
    ∴直线AC的函数解析式为:;
    (1)∵点D(m,n)是抛物线在第二象限的部分上的一动点,
    ∴D(m,﹣m1﹣m+1),
    过点D作DH⊥x轴于点H,则DH=﹣m1﹣m+1,AH=m+4,HO=﹣m,
    ∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,
    ∴S=(m+4)×(﹣m1﹣m+1)+(﹣m1﹣m+1+1)×(﹣m),
    化简,得S=﹣m1﹣4m+4(﹣4<m<0);
    (3)①若AC为平行四边形的一边,则C、E到AF的距离相等,
    ∴|yE|=|yC|=1,
    ∴yE=±1.
    当yE=1时,解方程﹣x1﹣x+1=1得,
    x1=0,x1=﹣3,
    ∴点E的坐标为(﹣3,1);
    当yE=﹣1时,解方程﹣x1﹣x+1=﹣1得,
    x1=,x1=,
    ∴点E的坐标为(,﹣1)或(,﹣1);
    ②若AC为平行四边形的一条对角线,则CE∥AF,
    ∴yE=yC=1,
    ∴点E的坐标为(﹣3,1).
    综上所述,满足条件的点E的坐标为(﹣3,1)、(,﹣1)、(,﹣1).

    25、(1)50;(2)108°;(3).
    【解析】
    分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
    本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
    (2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.

    点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
    26、1.
    【解析】
    直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案.
    【详解】
    解:原式=﹣1++4﹣1﹣(﹣1)
    =﹣1++4﹣1﹣+1
    =1.
    【点睛】
    本题考查了实数的运算,零指数幂,负整数指数幂,解题的关键是掌握幂的运算法则.
    27、见解析;.
    【解析】
    (1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
    (2)找出点(x,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.
    【详解】
    画树状图得:

    共有12种等可能的结果、、、、、、、、、、、;
    在所有12种等可能结果中,在函数的图象上的有、、这3种结果,
    点在函数的图象上的概率为.
    【点睛】
    本题考查的是用列表法或树状图法求概率,一次函数图象上点的坐标特征.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.

    相关试卷

    2022年陕西省商洛中考数学押题卷含解析:

    这是一份2022年陕西省商洛中考数学押题卷含解析,共19页。试卷主要包含了答题时请按要求用笔,方程x2+2x﹣3=0的解是,下列各式正确的是等内容,欢迎下载使用。

    2022年陕西省定边县重点名校中考押题数学预测卷含解析:

    这是一份2022年陕西省定边县重点名校中考押题数学预测卷含解析,共19页。试卷主要包含了如图,A(4,0),B等内容,欢迎下载使用。

    2022届陕西省咸阳百灵中学中考数学押题卷含解析:

    这是一份2022届陕西省咸阳百灵中学中考数学押题卷含解析,共23页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map