- 1.7《圆周率的历史》教案 教案 1 次下载
- 1.6《圆的面积(一)》教案 教案 2 次下载
- 2.1《分数混合运算(一)》教案 教案 2 次下载
- 2.2《分数混合运算(二)》教案 教案 1 次下载
- 2.3《分数混合运算(三)》教案 教案 2 次下载
北师大版六年级上册6 圆的面积(二)精品教案及反思
展开课题
圆的面积(二)
单元
第一单元
学科
数学
年级
六年级
教材
分析
《圆的面积(二)》是新北师大版六年级上册数学第一单元第6节。教材呈现了“节水型灌溉”个旋转喷水器喷水灌的情境,其中“喷水头旋转一周,浇灌农田的形状是圆”这句话提供了远的现实背景,也是把实际问题转化为圆的问题的依据。书中共设计了3个问题: 首先是直接应用圆面积的计算公式解决简单的实际问题;其次是已知圆的周长,求圆的面积的实际问题,具有一定的综合性,运用从未知想需知, 从已知想可知, 这种打通已知与未知的常用的思维方法;最后介绍了一种有趣的圆面积公式的推导过程,渗透等积变形的数学思想。通过本节课的学习,能使学生进一步明确数学生活化的思想,为今后学习数学打下良好基础,起着十分重要的作用,同时渗透等积变形的数学思想,并使学生能熟练分析已知与未知的联系,准确解答。
学习
目标
1.学习目标描述:能正确运用圆的面积公式计算圆的面积, 并能运用圆面积知识解决一些简单实际的问题。
2.学习内容分析:本课是在学生学习了圆的周长、圆的面积计算公式及推导过程的基础上进行教学的。本课从一个喷水头转动可以浇灌多大面积的农田的实例出发,结合学生的生活经验引出圆的面积知识。学习本节课,不但可以加强学生对前面知识的进一步理解,同时让学生学会准确地应用圆的面积计算公式解决一些简单的实际问题。
3.学科核心素养分析:通过运用圆的面积公式解决简单实际的问题,感受数学与现实生活的密切联系,体会数学的应用价值,激发学生热爱数学的情感。
重点
能运用圆面积知识解决一些简单实际的问题。
难点
掌握圆的面积公式的推导方法,渗透等积变形的数学思想。
教学过程
教学环节
教师活动
学生活动
设计意图
导入新课
复习旧知
1.算一算。
2.求出下面各圆的面积。
二、导入新课
师:农场的草坪上安装了许多自动喷水头,喷射的距离为3米。
课件出示:
师:喷水头转动一周形成的是什么图形?
课件出示:喷水头转动一周可以浇灌多大的面积?
师:这个面积就是谁的面积?
师:那么你能利用圆的面积计算公式来解决生活中的实际问题呢?这节课我们就来探究这方面的知识。
板书课题:圆的面积(二)
学生独自完成,然后集体订正。
学生:形成的是圆。
学生:是圆的面积。
通过学习旧知,检查学生掌握知识的情况,同时为后面学习新知做准备。
结合教材创设的情境,让学生在生活中发现问题,激发学生探究新知的兴趣。
讲授新课
一、已知半径求面积
课件出示:
喷水半径是3米,喷水头转动一周,能灌溉多大面积的农田?
师:怎么求出浇灌的面积呢?
3.14×32=2826(m2)
答:能浇灌28.26平方米的农田。
师强调:计算3.14×32,应先算32。
师:看来已知圆的半径求圆的面积时,可以直接利用圆的面积计算公式进行计算。如果已知周长,怎么求面积呢?
二、已知周长求面积
课件出示:量的圆形羊圈的周长是125.6m,这个羊圈的面积是多少平方米?
师:读一读,说说你知道了什么?
师:要计算圆形羊圈的面积,需要知道什么?
反馈:要计算圆形羊圈的面积,可以先求出羊圈的半径。
师:怎样求出圆的半径呢?
师:现在你能算出圆形羊圈的面积了吗?独自在练习本上算算。
展示反馈:
125.6÷3.14÷2=20(m)
3.14×202=1256(m2)
答:这个羊圈的面积是1256平方米。
师:看来已知圆的周长求圆的面积,可以先求出圆的半径,然后直接利用圆的面积公式计算。
尝试用其他方法推导圆的面积公式
师:下面是一种有意思的推导圆面积的方法。这是一个由草绳编织成的圆形茶杯垫片,沿线剪开。
课件出示:
师:在这个转化的过程中,什么变了,什么没有变?
反馈:像三角形,形状变了。
它们的面积一样,面积没变。
师:太有意思了!这个三角形与原来的圆有什么关系呢?想一想,填一填。
课件出示:
学生独自列式计算,然后集体反馈。
学生自由读一读,然后自由说说。
学生独自思考,然后集体交流。
学生:因为C=2πr,所以r=C÷π÷2。
学生独自计算,然后展示反馈。
学生独自观察,然后集体交流。
学生独自观察,然后集体交流。
引导学生利用圆的面积公式直接求出圆的面积,让学生掌握方法,并获得成功的经验,提高学生学习数学的兴趣。
引导学生探究不同条件下求圆的面积的方法,发展学生的发散思维和积极探究的能力。
用拼三角形的方法探究圆的面积计算公式,引发学生的兴趣,同时再一次渗透“化曲为直”的数学思想。
课堂练习
1.求出下面各圆的面积。
(1)r=1厘米 (2)d=10米
(3)C=18.84分米
2.在下面的长方形内画一个最大的圆,并求出圆的面积。
3.如图,直角梯形中,高是5厘米,下底是14厘米,求阴影部分的面积?
4.拓展应用:圆形花坛周围有一条环形小路,花坛直径8米,小路宽2米,这条环形小路占地多少平方米?
学生独自完成,然后集体订正。
讲完新课后及时进行巩固练习,可以使学生及时进行知识反馈,加强学生的理解和记忆,提高学生分析问题和解决问题的能力,有利于开发学生的智力。
课堂小结
通过本节课的学习,你们有什么收获?
学生自由说说。
课堂小结可以帮助学生理清所学知识的层次结构,掌握其外在的形式和内在联系,形成知识系列及一定的结构框架。
板书
圆的面积(二)
——解决问题
已知半径:S=πr2
圆的面积
已知周长:先求半径
利用简洁的文字、符号、图表等呈现本节课的新知,可以帮助学生理解掌握知识,形成完整的知识体系。
小学数学人教版六年级上册3 圆的面积教案设计: 这是一份小学数学人教版六年级上册3 圆的面积教案设计,共5页。教案主要包含了设疑导入,激发动机,动手操作,探索新知,运用新知,解决问题,全课小结,课堂作业等内容,欢迎下载使用。
2020-2021学年5 圆的面积(一)获奖教学设计: 这是一份2020-2021学年5 圆的面积(一)获奖教学设计,共9页。教案主要包含了导入新课,解决问题等内容,欢迎下载使用。
北师大版六年级上册6 圆的面积(二)教案设计: 这是一份北师大版六年级上册6 圆的面积(二)教案设计,共7页。教案主要包含了创设情境,探究体验,达标检测,教学板书,教学反思等内容,欢迎下载使用。