搜索
    上传资料 赚现金
    英语朗读宝

    2022年江苏省扬州市江都区城区中考适应性考试数学试题含解析

    2022年江苏省扬州市江都区城区中考适应性考试数学试题含解析第1页
    2022年江苏省扬州市江都区城区中考适应性考试数学试题含解析第2页
    2022年江苏省扬州市江都区城区中考适应性考试数学试题含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省扬州市江都区城区中考适应性考试数学试题含解析

    展开

    这是一份2022年江苏省扬州市江都区城区中考适应性考试数学试题含解析,共22页。试卷主要包含了下列四个多项式,能因式分解的是,下列事件是确定事件的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是(  )

    A. B. C. D.
    2.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是 (  )
    A.m> B.m>4
    C.m<4 D.<m<4
    3.下列四个多项式,能因式分解的是(  )
    A.a-1 B.a2+1
    C.x2-4y D.x2-6x+9
    4.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )

    A.x>1 B.x≥1 C.x>3 D.x≥3
    5.下列事件是确定事件的是(  )
    A.阴天一定会下雨
    B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门
    C.打开电视机,任选一个频道,屏幕上正在播放新闻联播
    D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书
    6.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是(  )
    A. B. C. D.
    7.已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是( )
    A.3.1; B.4; C.2; D.6.1.
    8.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )

    A.30° B.36° C.54° D.72°
    9.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为(  )

    A.15° B.55° C.65° D.75°
    10.数据”1,2,1,3,1”的众数是( )
    A.1 B.1.5 C.1.6 D.3
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1,y2,y3的大小关系是_____.
    12.如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:
    ①;②;③;④不等式的解集是或.
    其中正确结论的序号是__________.

    13.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.
    14.一副直角三角板叠放如图所示,现将含45°角的三角板固定不动,把含30°角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5°,第二秒旋转10°,第三秒旋转5°,第四秒旋转10°,…按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_____.

    15.已知⊙O的面积为9πcm2,若点O到直线L的距离为πcm,则直线l与⊙O的位置关系是_____.
    16.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是   (添加一个条件即可).

    三、解答题(共8题,共72分)
    17.(8分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.
    (1)求抛物线的解析式,并直接写出点D的坐标;
    (2)当△AMN的周长最小时,求t的值;
    (3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.

    18.(8分)如图1,在直角梯形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,过点C作CE⊥BP交直线BP于E.
    (1) 若,求证:;
    (2) 若AB=BC.
    ① 如图2,当点P与E重合时,求的值;
    ② 如图3,设∠DAP的平分线AF交直线BP于F,当CE=1,时,直接写出线段AF的长.

    19.(8分)如图,在梯形ABCD中,AD∥BC,对角线 AC、BD交于点 M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.

    (1)求证:;
    (2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.
    20.(8分)定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”.已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac≠0)是“完美抛物线”:
    (1)试判断ac的符号;
    (2)若c=-1,该二次函数图象与y轴交于点C,且S△ABC=1.
    ①求a的值;
    ②当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围.
    21.(8分)计算:2﹣1+|﹣|++2cos30°
    22.(10分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量.
    23.(12分)计算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣1
    24.如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
    从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.
    【详解】
    由题意可得:PB=3﹣t,BQ=2t,
    则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,
    故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.
    故选C.
    【点睛】
    此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.
    2、B
    【解析】
    根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.
    【详解】
    解:∵点A(m-1,1-2m)在第四象限,

    解不等式①得,m>1,
    解不等式②得,m>
    所以,不等式组的解集是m>1,
    即m的取值范围是m>1.
    故选B.
    【点睛】
    本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    3、D
    【解析】
    试题分析:利用平方差公式及完全平方公式的结构特征判断即可.
    试题解析:x2-6x+9=(x-3)2.
    故选D.
    考点:2.因式分解-运用公式法;2.因式分解-提公因式法.
    4、C
    【解析】
    试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,
    则该不等式组的解集是x>1.
    故选C.
    考点:在数轴上表示不等式的解集.
    5、D
    【解析】
    试题分析:找到一定发生或一定不发生的事件即可.
    A、阴天一定会下雨,是随机事件;
    B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;
    C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;
    D、在学校操场上向上抛出的篮球一定会下落,是必然事件.
    故选D.
    考点:随机事件.
    6、D
    【解析】
    根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.
    【详解】
    解:∵ab<0,
    ∴分两种情况:
    (1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;
    (2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.
    故选D
    【点睛】
    本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.
    7、A
    【解析】∵数据组2、x、8、1、1、2的众数是2,
    ∴x=2,
    ∴这组数据按从小到大排列为:2、2、2、1、1、8,
    ∴这组数据的中位数是:(2+1)÷2=3.1.
    故选A.
    8、B
    【解析】
    在等腰三角形△ABE中,求出∠A的度数即可解决问题.
    【详解】
    解:在正五边形ABCDE中,∠A=×(5-2)×180=108°

    又知△ABE是等腰三角形,
    ∴AB=AE,
    ∴∠ABE=(180°-108°)=36°.
    故选B.
    【点睛】
    本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.
    9、D
    【解析】
    根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.
    【详解】
    解:∵∠CDE=165°,∴∠ADE=15°,
    ∵DE∥AB,∴∠A=∠ADE=15°,
    ∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,
    故选D.
    【点睛】
    本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.
    10、A
    【解析】
    众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.
    【详解】
    在这一组数据中1是出现次数最多的,故众数是1.
    故选:A.
    【点睛】
    本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、y2<y3<y1
    【解析】
    把点的坐标分别代入抛物线解析式可分别求得y1、y2、y3的值,比较可求得答案.
    【详解】
    ∵y=2x2-4x+c,
    ∴当x=-3时,y1=2×(-3)2-4×(-3)+c=30+c,
    当x=2时,y2=2×22-4×2+c=c,
    当x=3时,y3=2×32-4×3+c=6+c,
    ∵c<6+c<30+c,
    ∴y2<y3<y1,
    故答案为y2<y3<y1.
    【点睛】
    本题主要考查二次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.
    12、②③④
    【解析】
    分析:根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正确.
    详解:由图象知,k1<0,k2<0,
    ∴k1k2>0,故①错误;
    把A(-2,m)、B(1,n)代入y=中得-2m=n,
    ∴m+n=0,故②正确;
    把A(-2,m)、B(1,n)代入y=k1x+b得

    ∴,
    ∵-2m=n,
    ∴y=-mx-m,
    ∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,
    ∴P(-1,0),Q(0,-m),
    ∴OP=1,OQ=m,
    ∴S△AOP=m,S△BOQ=m,
    ∴S△AOP=S△BOQ;故③正确;
    由图象知不等式k1x+b>的解集是x<-2或0<x<1,故④正确;
    故答案为:②③④.
    点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.
    13、37
    【解析】
    根据题意列出一元一次方程即可求解.
    【详解】
    解:设十位上的数字为a,则个位上的数为(a+4),依题意得:
    a+a+4=10,
    解得:a=3,
    ∴这个两位数为:37
    【点睛】
    本题考查了一元一次方程的实际应用,属于简单题,找到等量关系是解题关键.
    14、14s或38s.
    【解析】
    试题解析:分两种情况进行讨论:
    如图:




    旋转的度数为:
    每两秒旋转


    如图:





    旋转的度数为:
    每两秒旋转


    故答案为14s或38s.
    15、相离
    【解析】
    设圆O的半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离π比较即可.
    【详解】
    设圆O的半径是r,
    则πr2=9π,
    ∴r=3,
    ∵点0到直线l的距离为π,
    ∵3<π,
    即:r<d,
    ∴直线l与⊙O的位置关系是相离,
    故答案为:相离.
    【点睛】
    本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当r<d时相离;当r=d时相切;当r>d时相交.
    16、AE=AD(答案不唯一).
    【解析】
    要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加AE=AD,利用SAS来判定其全等;或添加∠B=∠C,利用ASA来判定其全等;或添加∠AEB=∠ADC,利用AAS来判定其全等.等(答案不唯一).

    三、解答题(共8题,共72分)
    17、(1)y=x2﹣x,点D的坐标为(2,﹣);(2)t=2;(3)M点的坐标为(2,0)或(6,0).
    【解析】
    (1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;
    (2)连接AC,如图①,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明△AOC和△ACB都是等边三角形,接着证明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,则判断△CMN为等边三角形得到MN=CM,于是△AMN的周长=OA+CM,由于CM⊥OA时,CM的值最小,△AMN的周长最小,从而得到t的值;
    (3)先利用勾股定理的逆定理证明△OCD为直角三角形,∠COD=90°,设M(t,0),则E(t,t2-t),根据相似三角形的判定方法,当时,△AME∽△COD,即|t-4|:4=|t2-t |:,当时,△AME∽△DOC,即|t-4|:=|t2-t |:4,然后分别解绝对值方程可得到对应的M点的坐标.
    【详解】
    解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得
    ,解得,
    ∴抛物线解析式为y=x2-x;
    ∵y=x2-x =-2) 2-;
    ∴点D的坐标为(2,-);
    (2)连接AC,如图①,

    AB==4,
    而OA=4,
    ∴平行四边形OCBA为菱形,
    ∴OC=BC=4,
    ∴C(2,2),
    ∴AC==4,
    ∴OC=OA=AC=AB=BC,
    ∴△AOC和△ACB都是等边三角形,
    ∴∠AOC=∠COB=∠OCA=60°,
    而OC=AC,OM=AN,
    ∴△OCM≌△ACN,
    ∴CM=CN,∠OCM=∠ACN,
    ∵∠OCM+∠ACM=60°,
    ∴∠ACN+∠ACM=60°,
    ∴△CMN为等边三角形,
    ∴MN=CM,
    ∴△AMN的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,
    当CM⊥OA时,CM的值最小,△AMN的周长最小,此时OM=2,
    ∴t=2;
    (3)∵C(2,2),D(2,-),
    ∴CD=,
    ∵OD=,OC=4,
    ∴OD2+OC2=CD2,
    ∴△OCD为直角三角形,∠COD=90°,
    设M(t,0),则E(t,t2-t),
    ∵∠AME=∠COD,
    ∴当时,△AME∽△COD,即|t-4|:4=|t2-t |:,
    整理得|t2-t|=|t-4|,
    解方程t2-t =(t-4)得t1=4(舍去),t2=2,此时M点坐标为(2,0);
    解方程t2-t =-(t-4)得t1=4(舍去),t2=-2(舍去);
    当时,△AME∽△DOC,即|t-4|:=|t2-t |:4,整理得|t2-t |=|t-4|,
    解方程t2-t =t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);
    解方程t2-t =-(t-4)得t1=4(舍去),t2=-6(舍去);
    综上所述,M点的坐标为(2,0)或(6,0).
    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题.
    18、(1)证明见解析;(2)①;②3.
    【解析】
    (1) 过点A作AF⊥BP于F,根据等腰三角形的性质得到BF=BP,易证Rt△ABF∽Rt△BCE,根据相似三角形的性质得到,即可证明BP=CE.
    (2) ①延长BP、AD交于点F,过点A作AG⊥BP于G,证明△ABG≌△BCP,根据全等三角形的性质得BG=CP,设BG=1,则PG=PC=1,BC=AB=,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出的值;
    ② 延长BF、AD交于点G,过点A作AH⊥BE于H,证明△ABH≌△BCE,根据全等三角形的性质得BG=CP,设BH=BP=CE=1,又,得到PG=,BG=,根据射影定理得到AB2=BH·BG ,即可求出AB= ,根据勾股定理得到
    ,根据等腰直角三角形的性质得到.
    【详解】
    解:(1) 过点A作AF⊥BP于F
    ∵AB=AP
    ∴BF=BP,
    ∵Rt△ABF∽Rt△BCE

    ∴BP=CE.

    (2) ①延长BP、AD交于点F,过点A作AG⊥BP于G

    ∵AB=BC
    ∴△ABG≌△BCP(AAS)
    ∴BG=CP
    设BG=1,则PG=PC=1
    ∴BC=AB=
    在Rt△ABF中,由射影定理知,AB2=BG·BF=5
    ∴BF=5,PF=5-1-1=3

    ② 延长BF、AD交于点G,过点A作AH⊥BE于H
    ∵AB=BC
    ∴△ABH≌△BCE(AAS)
    设BH=BP=CE=1

    ∴PG=,BG=
    ∵AB2=BH·BG
    ∴AB=

    ∵AF平分∠PAD,AH平分∠BAP
    ∴∠FAH=∠BAD=45°
    ∴△AFH为等腰直角三角形


    【点睛】
    考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.
    19、(1) 证明见解析;(2) 证明见解析.
    【解析】
    分析:(1)由AD∥BC可得出∠DAE=∠AEB,结合∠DCB=∠DAE可得出∠DCB=∠AEB,进而可得出AE∥DC、△AMF∽△CMD,根据相似三角形的性质可得出=,根据AD∥BC,可得出△AMD∽△CMB,根据相似三角形的性质可得出=,进而可得出=,即MD2=MF•MB;
    (2)设FM=a,则BF=3a,BM=4a.由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由AD∥BC,可得出△AFD∽△△EFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形.
    详解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.
    ∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MF•MB.
    (2)设FM=a,则BF=3a,BM=4a.
    由MD2=MF•MB,得:MD2=a•4a,∴MD=2a,∴DF=BF=3a.
    ∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四边形ABED是平行四边形.

    点睛:本题考查了相似三角形的判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出=、=;(2)牢记“对角线互相平分的四边形是平行四边形”.
    20、 (1) ac<3;(3)①a=1;②m>或m<.
    【解析】
    (1)设A (p,q).则B (-p,-q),把A、B坐标代入解析式可得方程组即可得到结论;
    (3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根据三角形的面积公式列方程即可得到结果;②由①可知:抛物线解析式为y=x3-3mx-1,根据M(-1,1)、N(3,4).得到这些MN的解析式y=x+(-1≤x≤3),联立方程组得到x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1≤x≤3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,根据题意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程组即可得到结论.
    【详解】
    (1)设A (p,q).则B (-p,-q),
    把A、B坐标代入解析式可得:

    ∴3ap3+3c=3.即p3=−,
    ∴−≥3,
    ∵ac≠3,
    ∴−>3,
    ∴ac<3;
    (3)∵c=-1,
    ∴p3=,a>3,且C(3,-1),
    ∴p=±,
    ①S△ABC=×3×1=1,
    ∴a=1;
    ②由①可知:抛物线解析式为y=x3-3mx-1,
    ∵M(-1,1)、N(3,4).
    ∴MN:y=x+(-1≤x≤3),
    依题,只需联立在-1≤x≤3内只有一个解即可,
    ∴x3-3mx-1=x+,
    故问题转化为:方程x3-(3m+)x-=3在-1≤x≤3内只有一个解,
    建立新的二次函数:y=x3-(3m+)x-,
    ∵△=(3m+)3+11>3且c=-<3,
    ∴抛物线y=x3−(3m+)x−与x轴有两个交点,且交y轴于负半轴.
    不妨设方程x3−(3m+)x−=3的两根分别为x1,x3.(x1<x3)
    则x1+x3=3m+,x1x3=−
    ∵方程x3−(3m+)x−=3在-1≤x≤3内只有一个解.
    故分两种情况讨论:
    (Ⅰ)若-1≤x1<3且x3>3:则
    .即:,
    可得:m>.
    (Ⅱ)若x1<-1且-1<x3≤3:则
    .即:,
    可得:m<,
    综上所述,m>或m<.
    【点睛】
    本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键.
    21、+4.
    【解析】
    原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值.
    【详解】
    原式=++2+2×=+4.
    【点睛】
    本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键.
    22、现在平均每天清雪量为1立方米.
    【解析】
    分析:设现在平均每天清雪量为x立方米,根据等量关系“现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同”列分式方程求解.
    详解:设现在平均每天清雪量为x立方米,
    由题意,得
    解得 x=1.
    经检验x=1是原方程的解,并符合题意.
    答:现在平均每天清雪量为1立方米.
    点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验.
    23、1
    【解析】
    本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.
    【详解】
    解:原式=2﹣+2×﹣3+1
    =1.
    【点睛】
    本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算.
    24、(1).(2)公平.
    【解析】
    试题分析:(1)首先根据题意结合概率公式可得答案;
    (2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.
    试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;
    (2)列表得:


    A

    B

    C

    D

    A



    (A,B)

    (A,C)

    (A,D)

    B

    (B,A)



    (B,C)

    (B,D)

    C

    (C,A)

    (C,B)



    (C,D)

    D

    (D,A)

    (D,B)

    (D,C)



    共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,
    ∴P(两张都是轴对称图形)=,因此这个游戏公平.
    考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.

    相关试卷

    江苏省扬州市江都区五校联谊重点中学2022年中考适应性考试数学试题含解析:

    这是一份江苏省扬州市江都区五校联谊重点中学2022年中考适应性考试数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。

    江苏省扬州市江都区城区2022年中考押题数学预测卷含解析:

    这是一份江苏省扬州市江都区城区2022年中考押题数学预测卷含解析,共22页。试卷主要包含了若关于x的一元二次方程,一次函数的图象不经过等内容,欢迎下载使用。

    2022年江苏省扬州市江都区国际校中考三模数学试题含解析:

    这是一份2022年江苏省扬州市江都区国际校中考三模数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列4个数等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map