![山东省青岛市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类第1页](http://m.enxinlong.com/img-preview/2/3/13325178/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省青岛市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类第2页](http://m.enxinlong.com/img-preview/2/3/13325178/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省青岛市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类第3页](http://m.enxinlong.com/img-preview/2/3/13325178/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山东省青岛市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类
展开
这是一份山东省青岛市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类,共19页。试卷主要包含了﹣的绝对值是 ,×= ,之间的反比例函数关系如图所示,与x轴交点的个数是 等内容,欢迎下载使用。
山东省青岛市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类
一.绝对值
1.(2022•青岛)﹣的绝对值是 .
二.二次根式的混合运算
2.(2021•青岛)计算:(+)×= .
3.(2020•青岛)计算:(﹣)×= .
三.由实际问题抽象出分式方程
4.(2022•青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程,设小亮训练前的平均速度为x米/分,那么x满足的分式方程为 .
四.反比例函数系数k的几何意义
5.(2020•青岛)如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,7)也在此函数的图象上,则a= .
五.反比例函数的应用
6.(2021•青岛)车从甲地驶往乙地,行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的反比例函数关系如图所示.若列车要在2.5h内到达,则速度至少需要提高到 km/h.
六.抛物线与x轴的交点
7.(2020•青岛)抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是 .
七.菱形的性质
8.(2022•青岛)图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中∠ABC的度数是 °.
八.正方形的性质
9.(2020•青岛)如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G.若DE=2,OF=3,则点A到DF的距离为 .
九.切线的性质
10.(2022•青岛)如图,AB是⊙O的切线,B为切点,OA与⊙O交于点C,以点A为圆心、以OC的长为半径作,分别交AB,AC于点E,F.若OC=2,AB=4,则图中阴影部分的面积为 .
11.(2020•青岛)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为 .
一十.正多边形和圆
12.(2021•青岛)如图,正方形ABCD内接于⊙O,PA,PD分别与⊙O相切于点A和点D,PD的延长线与BC的延长线交于点E.已知AB=2,则图中阴影部分的面积为 .
一十一.翻折变换(折叠问题)
13.(2022•青岛)如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有: .(填写序号)
①BD=8
②点E到AC的距离为3
③EM=
④EM∥AC
一十二.相似三角形的判定与性质
14.(2021•青岛)已知正方形ABCD的边长为3,E为CD上一点,连接AE并延长,交BC的延长线于点F,过点D作DG⊥AF,交AF于点H,交BF于点G,N为EF的中点,M为BD上一动点,分别连接MC,MN.若,则MN+MC的最小值为 .
一十三.用样本估计总体
15.(2021•青岛)在一个不透明的袋中装有若干个红球和4个黑球,每个球除颜色外完全相同,摇匀后从中摸出一个球,记下颜色后再放回袋中,不断重复这一过程,共摸球100次,其中有40次摸到黑球,估计袋中红球的个数是 .
一十四.条形统计图
16.(2021•青岛)已知甲、乙两队员射击的成绩如图,设甲、乙两队员射击成绩的方差分别为S甲2、S乙2,则S甲2 S乙2(填“>”、“=”、“<”).
一十五.加权平均数
17.(2022•青岛)小明参加“建团百年,我为团旗添光彩”主题演讲比赛,其演讲形象、内容、效果三项分别是9分、8分、8分.若将三项得分依次按3:4:3的比例确定最终成绩,则小明的最终比赛成绩为 分.
18.(2020•青岛)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么 将被录用(填甲或乙).
应聘者
项目
甲
乙
学历
9
8
经验
7
6
工作态度
5
7
参考答案与试题解析
一.绝对值
1.(2022•青岛)﹣的绝对值是 .
【解答】解:|﹣|=.
故本题的答案是.
二.二次根式的混合运算
2.(2021•青岛)计算:(+)×= 5 .
【解答】解:原式=+
=4+1
=5.
故答案为5.
3.(2020•青岛)计算:(﹣)×= 4 .
【解答】解:原式=(2﹣)×
=×
=4,
故答案为:4.
三.由实际问题抽象出分式方程
4.(2022•青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程,设小亮训练前的平均速度为x米/分,那么x满足的分式方程为 ﹣=3 .
【解答】解:依题意有:﹣=3.
故答案为:﹣=3.
四.反比例函数系数k的几何意义
5.(2020•青岛)如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,7)也在此函数的图象上,则a= .
【解答】解:∵AB垂直于x轴,垂足为B,
∴△OAB的面积=|k|,
即|k|=6,
而k>0,
∴k=12,
∴反比例函数为y=,
∵点P(a,7)也在此函数的图象上,
∴7a=12,解得a=.
故答案为.
五.反比例函数的应用
6.(2021•青岛)车从甲地驶往乙地,行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的反比例函数关系如图所示.若列车要在2.5h内到达,则速度至少需要提高到 240 km/h.
【解答】解:∵从甲地驶往乙地的路程为200×3=600(km),
∴汽车行驶完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的关系式为t=,
当t=2.5h时,即2.5=,
∴v=240,
答:列车要在2.5h内到达,则速度至少需要提高到240km/h.
故答案为:240.
六.抛物线与x轴的交点
7.(2020•青岛)抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是 2 .
【解答】解:∵抛物线y=2x2+2(k﹣1)x﹣k(k为常数),
∴当y=0时,0=2x2+2(k﹣1)x﹣k,
∴△=[2(k﹣1)]2﹣4×2×(﹣k)=4k2+4>0,
∴0=2x2+2(k﹣1)x﹣k有两个不相等的实数根,
∴抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴有两个交点,
故答案为:2.
七.菱形的性质
8.(2022•青岛)图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中∠ABC的度数是 60 °.
【解答】解:如图,
∵∠BAD=∠BAE=∠DAE,∠BAD+∠BAE+∠DAE=360°,
∴∠BAD=∠BAE=∠DAE=120°,
∵BC∥AD,
∴∠ABC=180°﹣120°=60°,
故答案为:60.
八.正方形的性质
9.(2020•青岛)如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G.若DE=2,OF=3,则点A到DF的距离为 .
【解答】解:解法一:∵在正方形ABCD中,对角线AC与BD交于点O,
∴AO=DO,∠ADC=90°,
∴∠ADE=90°,
∵点F是AE的中点,
∴DF=AF=EF=AE,
∴OF垂直平分AD,
∴AG=DG,
∴FG=DE=1,
∵OF=3,
∴OG=2,
∵AO=CO,
∴CD=2OG=4,
∴AD=CD=4,
∴AE===2.
过A作AH⊥DF于H,
∴∠H=∠ADE=90°,
∵AF=DF,
∴∠ADF=∠DAE,
∴△ADH∽△EAD,
∴=,
∴=,
∴AH=,
即点A到DF的距离为,
解法二:在正方形ABCD中,对角线AC与BD交于点O,
∴AO=DO,∠ADC=90°,
∴∠ADE=90°,
∵点F是AE的中点,
∴DF=AF=EF=AE,
∴OF垂直平分AD,
∴AG=DG,
∴FG=DE=1,
∵OF=3,
∴OG=2,
∵AO=CO,
∴CD=2OG=4,
∴AD=CD=4,
∴DG=2,
∴DF===,
过A作AH⊥DF于H,
∴∠H=∠ADE=90°,
∴S△ADF=DF•AH=AD•FG,
∴AH=,
故答案为:.
九.切线的性质
10.(2022•青岛)如图,AB是⊙O的切线,B为切点,OA与⊙O交于点C,以点A为圆心、以OC的长为半径作,分别交AB,AC于点E,F.若OC=2,AB=4,则图中阴影部分的面积为 4﹣π .
【解答】解:连接OB,
∵AB是⊙O的切线,B为切点,
∴∠OBA=90°,
∴∠BOA+∠A=90°,
由题意得:
OB=OC=AE=AF=2,
∴阴影部分的面积=△AOB的面积﹣(扇形BOC的面积+扇形EAF的面积)
=AB•OB﹣
=×4×2﹣π
=4﹣π,
故答案为:4﹣π.
11.(2020•青岛)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为 24﹣3﹣3π .
【解答】解:如图,连接OM、ON,
∵半圆分别与AB,AC相切于点M,N.
∴OM⊥AB,ON⊥AC,
∵∠BAC=120°,
∴∠MON=60°,
∴∠MOB+∠NOC=120°,
∵的长为π,
∴=π,
∴r=3,
∴OM=ON=r=3,
连接OA,
在Rt△AON中,∠AON=30°,ON=3,
∴AN=,
∴AM=AN=,
∴BM+CN=AB+AC﹣(AM+AN)=16﹣2,
∴S阴影=S△OBM+S△OCN﹣(S扇形MOE+S扇形NOF)
=3×(BM+CN)﹣()
=(16﹣2)﹣3π
=24﹣3﹣3π.
故答案为:24﹣3﹣3π.
一十.正多边形和圆
12.(2021•青岛)如图,正方形ABCD内接于⊙O,PA,PD分别与⊙O相切于点A和点D,PD的延长线与BC的延长线交于点E.已知AB=2,则图中阴影部分的面积为 5﹣π .
【解答】解:连接AC,OD,
∵四边形BCD是正方形,
∴∠B=90°,
∴AC是⊙O的直径,∠AOD=90°,
∵PA,PD分别与⊙O相切于点A和点D,
∴∠PAO=∠PDO=90°,
∴四边形AODP是矩形,
∵OA=OD,
∴矩形AODP是正方形,
∴∠P=90°,AP=AO,AC∥PE,
∴∠E=∠ACB=45°,
∴△CDE是等腰直角三角形,
∵AB=2,
∴AC=2AO=2,DE=CD=2,
∴AP=PD=AO=,
∴PE=3,
∴图中阴影部分的面积=(AC+PE)•AP﹣AO2•π=(2+3)×﹣()2•π=5﹣π,
故答案为:5﹣π.
一十一.翻折变换(折叠问题)
13.(2022•青岛)如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有: ①④ .(填写序号)
①BD=8
②点E到AC的距离为3
③EM=
④EM∥AC
【解答】解:在△ABC中,AB=AC,BC=16,AD⊥BC,
∴BD=DC=BC=8,故①正确;
如图,过点E作EF⊥AB于点F,EH⊥AC于点H,
∵AD⊥BC,AB=AC,
∴AE平分∠BAC,
∴EH=EF,
∵BE是∠ABD的角平分线,
∵ED⊥BC,EF⊥AB,
∴EF=ED,
∴EH=ED=4,故②错误;
由折叠性质可得:EM=MC,DM+MC=DM+EM=CD=8,
设DM=x,则EM=8﹣x,
Rt△EDM中,EM2=DM2+DE2,
∴(8﹣x)2=42+x2,
解得:x=3,
∴EM=MC=5,故③错误;
设AE=a,则AD=AE+ED=4+a,BD=8,
∴AB2=(4+a)2+82,
∵=,
∴,
∴,
∴AB=2a,
∴(4+a)2+82=(2a)2,
解得:a=或a=﹣4(舍去),
∴tanC==,
又∵tan∠EMD=,
∴∠C=∠EMD,
∴EM∥AC,故④正确,
故答案为:①④.
一十二.相似三角形的判定与性质
14.(2021•青岛)已知正方形ABCD的边长为3,E为CD上一点,连接AE并延长,交BC的延长线于点F,过点D作DG⊥AF,交AF于点H,交BF于点G,N为EF的中点,M为BD上一动点,分别连接MC,MN.若,则MN+MC的最小值为 2 .
【解答】解:∵四边形ABCD是正方形,
∴A点与C点关于BD对称,
∴CM=AM,
∴MN+CM=MN+AM≥AN,
∴当A、M、N三点共线时,MN+CM的值最小,
∵AD∥CF,
∴∠DAE=∠F,
∵∠DAE+∠DEH=90°,
∵DG⊥AF,
∴∠CDG+∠DEH=90°,
∴∠DAE=∠CDG,
∴∠CDG=∠F,
∴△DCG∽△FCE,
∵,
∴=,
∵正方形边长为3,
∴CF=6,
∵AD∥CF,
∴==,
∴DE=1,CE=2,
在Rt△CEF中,EF2=CE2+CF2,
∴EF==2,
∵N是EF的中点,
∴EN=,
在Rt△ADE中,EA2=AD2+DE2,
∴AE==,
∴AN=2,
∴MN+MC的最小值为2,
故答案为:2.
一十三.用样本估计总体
15.(2021•青岛)在一个不透明的袋中装有若干个红球和4个黑球,每个球除颜色外完全相同,摇匀后从中摸出一个球,记下颜色后再放回袋中,不断重复这一过程,共摸球100次,其中有40次摸到黑球,估计袋中红球的个数是 6 .
【解答】解:设袋中红球的个数是x个,根据题意得:
=,
解得:x=6,
经检验:x=6是分式方程的解,
即估计袋中红球的个数是6个,
故答案为6.
一十四.条形统计图
16.(2021•青岛)已知甲、乙两队员射击的成绩如图,设甲、乙两队员射击成绩的方差分别为S甲2、S乙2,则S甲2 > S乙2(填“>”、“=”、“<”).
【解答】解:甲射击的成绩为:6,7,7,7,8,8,9,9,9,10,
乙射击的成绩为:6,7,7,8,8,8,8,9,9,10,
则甲=×(6+7×3+8×2+9×3+10)=8,
乙=×(6+7×2+8×4+9×2+10)=8,
∴S甲2=×[(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+3×(9﹣8)2+(10﹣8)2]
=×[4+3+3+4]
=1.4;
S乙2=×[(6﹣8)2+2×(7﹣8)2+4×(8﹣8)2+2×(9﹣8)2+(10﹣8)2]
=×[4+2+2+4]
=1.2;
∵1.4>1.2,
∴S甲2>S乙2,
故答案为:>.
一十五.加权平均数
17.(2022•青岛)小明参加“建团百年,我为团旗添光彩”主题演讲比赛,其演讲形象、内容、效果三项分别是9分、8分、8分.若将三项得分依次按3:4:3的比例确定最终成绩,则小明的最终比赛成绩为 8.3 分.
【解答】解:根据题意得:
=8.3(分).
故小明的最终比赛成绩为8.3分.
故答案为:8.3.
18.(2020•青岛)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么 乙 将被录用(填甲或乙).
应聘者
项目
甲
乙
学历
9
8
经验
7
6
工作态度
5
7
【解答】解:∵==,==,
∴<,
∴乙将被录用,
故答案为:乙.
相关试卷
这是一份山东省青岛市2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共18页。试卷主要包含了2= ,×= ,之间的反比例函数关系如图所示等内容,欢迎下载使用。
这是一份山东省潍坊市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类,共13页。试卷主要包含了因式分解,方程组的解为 ,,则n的值为 等内容,欢迎下载使用。
这是一份山东省烟台市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类,共15页。试卷主要包含了,使得运算结果等于24,,则AB的长为 等内容,欢迎下载使用。