


2022届吉林实验中学中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为( )
A.12cm B.12cm C.24cm D.24cm
2.计算tan30°的值等于( )
A. B. C. D.
3.在0,π,﹣3,0.6,这5个实数中,无理数的个数为( )
A.1个 B.2个 C.3个 D.4个
4.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将 绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为( )
A. B. C. D.
5.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为( )
A. cm B.cm C.cm D. cm
6.若关于的一元二次方程有两个不相等的实数根,则的取值范围( )
A. B. C.且 D.
7.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是( )
A.= B.= C.= D.=
8.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2, 交x轴于点A2;将C2绕点A2旋转180°得C3, 交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )
A.4 B.﹣4 C.﹣6 D.6
9.如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为( )
A. B. C. D.
10.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是( )
A.7cm B.4cm C.5cm D.3cm
二、填空题(本大题共6个小题,每小题3分,共18分)
11.某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB的长为1.74m,后拉杆AE的倾斜角∠EAB=53°,篮板MN到立柱BC的水平距离BH=1.74m,在篮板MN另一侧,与篮球架横伸臂DG等高度处安装篮筐,已知篮筐到地面的距离GH的标准高度为3.05m.则篮球架横伸臂DG的长约为_____m(结果保留一位小数,参考数据:sin53°≈, cos53°≈,tan53°≈).
12.因式分解:3a2-6a+3=________.
13.函数中自变量x的取值范围是_____;函数中自变量x的取值范围是______.
14.计算:+(|﹣3|)0=_____.
15.如图,四边形ABCD是菱形,☉O经过点A,C,D,与BC相交于点E,连接AC,AE,若∠D=78°,则∠EAC=________°.
16.某商品原价100元,连续两次涨价后,售价为144元.若平均每次增长率为,则__________.
三、解答题(共8题,共72分)
17.(8分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.分别求出一次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.
18.(8分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)
画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.
19.(8分)某商城销售A,B两种自行车型自行车售价为2 100元辆,B型自行车售价为1 750元辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.
求每辆A,B两种自行车的进价分别是多少?
现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.
20.(8分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=时,求AF的长.
21.(8分)化简分式,并从0、1、2、3这四个数中取一个合适的数作为x的值代入求值.
22.(10分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
23.(12分)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1( , ),B1( , ),C1( , );画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是 .
24.如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B(2,n)两点.
(1)求一次函数和二次函数的解析式;
(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;
(3)设二次函数y=﹣x2+c的图象与y轴相交于点C,连接AC,BC,求△ABC的面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
过A作AD⊥BF于D,根据45°角的三角函数值可求出AB的长度,根据含30°角的直角三角形的性质求出斜边AC的长即可.
【详解】
如图,过A作AD⊥BF于D,
∵∠ABD=45°,AD=12,
∴=12,
又∵Rt△ABC中,∠C=30°,
∴AC=2AB=24,
故选:D.
【点睛】
本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.
2、C
【解析】
tan30°= .故选C.
3、B
【解析】
分别根据无理数、有理数的定义逐一判断即可得.
【详解】
解:在0,π,-3,0.6,这5个实数中,无理数有π、这2个,
故选B.
【点睛】
此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
4、B
【解析】
阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
【详解】
解:由旋转可知AD=BD,
∵∠ACB=90°,AC=2,
∴CD=BD,
∵CB=CD,
∴△BCD是等边三角形,
∴∠BCD=∠CBD=60°,
∴BC=AC=2,
∴阴影部分的面积=2×2÷2−=2−.
故选:B.
【点睛】
本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算.
5、B
【解析】
试题解析:∵菱形ABCD的对角线
根据勾股定理,
设菱形的高为h,
则菱形的面积
即
解得
即菱形的高为cm.
故选B.
6、C
【解析】
根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论.
【详解】
解:∵关于x的一元二次方程有两个不相等的实数根,
∴ ,
解得:k<1且k≠1.
故选:C.
【点睛】
本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键.
7、D
【解析】
根据平行线分线段成比例定理的逆定理,当或时,,然后可对各选项进行判断.
【详解】
解:当或时,,
即或.
所以D选项是正确的.
【点睛】
本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.
8、C
【解析】
分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.
详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),
∴OA1=5,
∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,
∴A1A2=A2A3=…=OA1=5,
∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),
当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,
即m=﹣1.
故选C.
点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.
9、B
【解析】
先利用三角函数求出∠BAE=45°,则BE=AB=,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD进行计算即可.
【详解】
解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.
∵AD∥BC,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.
故选B.
【点睛】
本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.
10、A
【解析】
过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.
【详解】
解:作PD⊥OB于D,
∵OP平分∠AOB,PC⊥OA,PD⊥OA,
∴PD=PC=6cm,
则PD的最小值是6cm,
故选A.
【点睛】
考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.1.
【解析】
过点D作DO⊥AH于点O,先证明△ABC∽△AOD得出=,再根据已知条件求出AO,则OH=AH-AO=DG.
【详解】
解:过点D作DO⊥AH于点O,如图:
由题意得CB∥DO,
∴△ABC∽△AOD,
∴=,
∵∠CAB=53°,tan53°=,
∴tan∠CAB==,
∵AB=1.74m,
∴CB=1.31m,
∵四边形DGHO为长方形,
∴DO=GH=3.05m,OH=DG,
∴=,
则AO=1.1875m,
∵BH=AB=1.75m,
∴AH=3.5m,
则OH=AH-AO≈1.1m,
∴DG≈1.1m.
故答案为1.1.
【点睛】
本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.
12、3(a-1)2
【解析】
先提公因式,再套用完全平方公式.
【详解】
解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.
【点睛】
考点:提公因式法与公式法的综合运用.
13、x≠2 x≥3
【解析】
根据分式的意义和二次根式的意义,分别求解.
【详解】
解:根据分式的意义得2-x≠0,解得x≠2;
根据二次根式的意义得2x-6≥0,解得x≥3.
故答案为: x≠2, x≥3.
【点睛】
数自变量的范围一般从几个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
14、
【解析】
原式= .
15、1.
【解析】
解:∵四边形ABCD是菱形,∠D=78°,
∴∠ACB=(180°-∠D)=51°,
又∵四边形AECD是圆内接四边形,
∴∠AEB=∠D=78°,
∴∠EAC=∠AEB-∠ACB=1°.
故答案为:1°
16、20%.
【解析】
试题分析:根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,列方程求x.
试题解析:依题意,有:100(1+x)2=144,
1+x=±1.2,
解得:x=20%或-2.2(舍去).
考点:一元二次方程的应用.
三、解答题(共8题,共72分)
17、(1)反比例函数解析式为y=,一次函数解析式为y=x+2;(2)△ACB的面积为1.
【解析】
(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;
(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.
【详解】
解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,
当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),
将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,
解得:,则一次函数解析式为y=x+2;
(2)由题意知BC=2,则△ACB的面积=×2×1=1.
【点睛】
本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.
18、解:(1)如图,△A1B1C1即为所求,C1(2,-2).(2)如图,△A2BC2即为所求,C2(1,0),△A2BC2的面积:10
【解析】
分析:(1)根据网格结构,找出点A、B、C向下平移4个单位的对应点、、 的位置,然后顺次连接即可,再根据平面直角坐标系写出点的坐标;(2)延长BA到使A=AB,延长BC到,使C=BC,然后连接A2C2即可,再根据平面直角坐标系写出点的坐标,利用△B所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.
本题解析:(1)如图,△A1B1C1即为所求,C1(2,-2)
(2)如图,△B为所求, (1,0),
△B 的面积:
6×4−×2×6−×2×4−×2×4=24−6−4−4=24−14=10,
19、(1)每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.
【解析】
(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,根据题意列出方程,求出方程的解即可得到结果;
(2)由总利润=单辆利润×辆数,列出y与x的关系式,利用一次函数性质确定出所求即可.
【详解】
(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,
根据题意,得=,
解得x=1600,
经检验,x=1600是原方程的解,
x+10=1 600+10=2 000,
答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;
(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,
根据题意,得,
解得:33≤m≤1,
∵m为正整数,
∴m=34,35,36,37,38,39,1.
∵y=﹣50m+15000,k=﹣50<0,
∴y随m的增大而减小,∴当m=34时,y有最大值,
最大值为:﹣50×34+15000=13300(元).
答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.
【点睛】
本题主要考查一次函数的应用、分式方程的应用及一元一次不等式组的应用.仔细审题,找出题目中的数量关系是解答本题的关键.
20、(1)见解析(2)
【解析】
(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;
(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=从而可求出r的值.
【详解】
解:(1)连接OE,BE,
∵DE=EF,
∴=
∴∠OBE=∠DBE
∵OE=OB,
∴∠OEB=∠OBE
∴∠OEB=∠DBE,
∴OE∥BC
∵⊙O与边AC相切于点E,
∴OE⊥AC
∴BC⊥AC
∴∠C=90°
(2)在△ABC,∠C=90°,BC=3,sinA=,
∴AB=5,
设⊙O的半径为r,则AO=5﹣r,
在Rt△AOE中,sinA=
∴
∴
【点睛】
本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.
21、x取0时,为1 或x取1时,为2
【解析】
试题分析:利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.
试题解析:解:原式=[]
=
=
= x+1,
∵x1-4≠0,x-2≠0,
∴x≠1且x≠-1且x≠2,
当x=0时,原式=1.
或当x=1时,原式=2.
22、(1)15人;(2)补图见解析.(3).
【解析】
(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;
(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;
(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.
【详解】
解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;
(2)A2的人数为15﹣2﹣6﹣4=3(人)
补全图形,如图所示,
A1所在圆心角度数为:×360°=48°;
(3)画出树状图如下:
共6种等可能结果,符合题意的有3种
∴选出一名男生一名女生的概率为:P=.
【点睛】
本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.
23、(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)见解析,1.
【解析】
(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;
(2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.
【详解】
(1)如图所示,△A1B1C1即为所求.
A1(﹣1,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2).
故答案为:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;
(2)如图所示,△CC1C2的面积是2×1=1.
故答案为:1.
【点睛】
本题考查了作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.
24、(1)y=﹣x+1;(2)﹣1<x<2;(3)3;
【解析】
(1)根据待定系数法求一次函数和二次函数的解析式即可.
(2)根据图象以及点A,B两点的坐标即可求出使二次函数的值大于一次函数的值的x的取值范围;
(3)连接AC、BC,设直线AB交y轴于点D,根据即可求出△ABC的面积.
【详解】
(1)把A(﹣1,2)代入y=﹣x2+c得:﹣1+c=2,
解得:c=3,
∴y=﹣x2+3,
把B(2,n)代入y=﹣x2+3得:n=﹣1,
∴B(2,﹣1),
把A(﹣1,2)、B(2,﹣1)分别代入y=kx+b得
解得:
∴y=﹣x+1;
(2)根据图象得:使二次函数的值大于一次函数的值的x的取值范围是﹣1<x<2;
(3)连接AC、BC,设直线AB交y轴于点D,
把x=0代入y=﹣x2+3得:y=3,
∴C(0,3),
把x=0代入y=﹣x+1得:y=1,
∴D(0,1),
∴CD=3﹣1=2,
则
【点睛】
考查待定系数法求二次函数解析式,三角形的面积公式等,掌握待定系数法是解题的关键.
2022年江苏省盐城市东台实验中学中考数学模拟预测题含解析: 这是一份2022年江苏省盐城市东台实验中学中考数学模拟预测题含解析,共20页。试卷主要包含了下列各式计算正确的是,不等式3x<2等内容,欢迎下载使用。
2022届吉林省白城市中考数学模拟预测题含解析: 这是一份2022届吉林省白城市中考数学模拟预测题含解析,共21页。试卷主要包含了已知,则的值是,下列计算正确的是,若△÷,则“△”可能是等内容,欢迎下载使用。
2021-2022学年江苏省南京鼓楼实验中学中考数学模拟预测题含解析: 这是一份2021-2022学年江苏省南京鼓楼实验中学中考数学模拟预测题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。