年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届河南省柘城县张桥乡联合中学中考数学适应性模拟试题含解析

    2022届河南省柘城县张桥乡联合中学中考数学适应性模拟试题含解析第1页
    2022届河南省柘城县张桥乡联合中学中考数学适应性模拟试题含解析第2页
    2022届河南省柘城县张桥乡联合中学中考数学适应性模拟试题含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届河南省柘城县张桥乡联合中学中考数学适应性模拟试题含解析

    展开

    这是一份2022届河南省柘城县张桥乡联合中学中考数学适应性模拟试题含解析,共17页。试卷主要包含了比较4,,的大小,正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.对于代数式ax2+bx+c(a≠0),下列说法正确的是( )
    ①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)
    ②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c
    ③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
    ④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
    A.③ B.①③ C.②④ D.①③④
    2.在-,,0,-2这四个数中,最小的数是( )
    A. B. C.0 D.-2
    3.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )

    A. B. C. D.6
    4.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是(  )

    A. B. C. D.
    5.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为(  )
    A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣12
    6.比较4,,的大小,正确的是(  )
    A.4<< B.4<<
    C.<4< D.<<4
    7.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为(  )

    A.(2,1) B.(1,2) C.(1,3) D.(3,1)
    8.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是(  )
    A. B. C. D.
    9.下列函数中,y随着x的增大而减小的是( )
    A.y=3x B.y=﹣3x C. D.
    10.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B4的坐标为_____,点B2017的坐标为_____.

    12.若分式方程有增根,则m的值为______.
    13.不等式组的解集是__.
    14.写出一个经过点(1,2)的函数表达式_____.
    15.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_____.
    16.电子跳蚤游戏盘是如图所示的△ABC,AB=AC=BC=1.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1= CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2= AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3= BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2016与点P2017之间的距离为_________.

    三、解答题(共8题,共72分)
    17.(8分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?
    18.(8分)张老师在黑板上布置了一道题:计算:2(x+1)2﹣(4x﹣5),求当x=和x=﹣时的值.小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由.

    19.(8分)如图,已知▱ABCD.作∠B的平分线交AD于E点。(用尺规作图法,保留作图痕迹,不要求写作法);若▱ABCD的周长为10,CD=2,求DE的长。

    20.(8分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)

    21.(8分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.

    22.(10分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是 ; 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.
    23.(12分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)

    (1)写出D级学生的人数占全班总人数的百分比为   ,C级学生所在的扇形圆心角的度数为   ;
    (2)该班学生体育测试成绩的中位数落在等级   内;
    (3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?
    24.如图1,反比例函数(x>0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.
    (1)求k的值;
    (2)求tan∠DAC的值及直线AC的解析式;
    (3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】

    (1)如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故①中结论不一定成立;
    (2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故②错误;
    (3)如果ac<0,则b2-4ac>0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c,故③在结论正确;
    (4)如果ac>0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以④中结论不一定成立.
    综上所述,四种说法中正确的是③.
    故选A.
    2、D
    【解析】
    根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.
    【详解】
    在﹣,,0,﹣1这四个数中,﹣1<﹣<0<,
    故最小的数为:﹣1.
    故选D.
    【点睛】
    本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.
    3、A
    【解析】
    根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.
    【详解】
    ∵在矩形ABCD中,AB=4,BC=3,F是AB中点,
    ∴BF=BG=2,
    ∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,
    ∴S1-S2=4×3-=,
    故选A.
    【点睛】
    本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    4、C
    【解析】
    分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.
    详解:从左边看竖直叠放2个正方形.
    故选:C.
    点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.
    5、A
    【解析】
    根据科学记数法的表示方法解答.
    【详解】
    解:把这个数用科学记数法表示为.
    故选:.
    【点睛】
    此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.
    6、C
    【解析】
    根据4=<且4=>进行比较
    【详解】
    解:易得:4=<且4=>,
    所以<4<
    故选C.
    【点睛】
    本题主要考查开平方开立方运算。
    7、D
    【解析】
    过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.
    【详解】
    如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.

    【点睛】
    本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.
    8、A
    【解析】
    首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
    【详解】
    画树状图如下:

    由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
    ∴两次都摸到黄球的概率为,
    故选A.
    【点睛】
    此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
    9、B
    【解析】
    试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;
    B、y=﹣3x,y随着x的增大而减小,正确;
    C、,每个象限内,y随着x的增大而减小,故此选项错误;
    D、,每个象限内,y随着x的增大而增大,故此选项错误;
    故选B.
    考点:反比例函数的性质;正比例函数的性质.
    10、C
    【解析】
    列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可得.
    【详解】
    画树状图如下,共4种情况,有1种情况每个路口都是绿灯,所以概率为.
    故选C.


    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(20,4) (10086,0)
    【解析】
    首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.
    【详解】
    解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,B2016的横坐标为:×10=1.
    ∵B2C2=B4C4=OB=4,∴点B4的坐标为(20,4),∴B2017的横坐标为1++=10086,纵坐标为0,∴点B2017的坐标为:(10086,0).
    故答案为(20,4)、(10086,0).
    【点睛】
    本题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题的关键.
    12、-1
    【解析】
    增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.
    【详解】
    方程两边都乘(x-1),得
    x-1(x-1)=-m
    ∵原方程增根为x=1,
    ∴把x=1代入整式方程,得m=-1,
    故答案为:-1.
    【点睛】
    本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
    13、2≤x<1
    【解析】
    分别解两个不等式得到x<1和x≥2,然后根据大小小大中间找确定不等数组的解集.
    【详解】
    解:,
    解①得x<1,
    解②得x≥2,
    所以不等式组的解集为2≤x<1.
    故答案为2≤x<1.
    【点睛】
    本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
    14、y=x+1(答案不唯一)
    【解析】
    本题属于结论开放型题型,可以将函数的表达式设计为一次函数、反比例函数、二次函数的表达式.答案不唯一.
    【详解】
    解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1,…答案不唯一.
    故答案可以是:y=x+1(答案不唯一).
    【点睛】
    本题考查函数,解题的关键是清楚几种函数的一般式.
    15、
    【解析】
    摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是.
    故答案是:.
    16、3
    【解析】
    ∵△ABC为等边三角形,边长为1,根据跳动规律可知,
    ∴P0P1=3,P1P2=2,P2P3=3,P3P4=2,…
    观察规律:当落点脚标为奇数时,距离为3,当落点脚标为偶数时,距离为2,
    ∵2017是奇数,
    ∴点P2016与点P2017之间的距离是3.
    故答案为:3.
    【点睛】考查的是等边三角形的性质,根据题意求出P0P1,P1P2,P2P3,P3P4的值,找出规律是解答此题的关键.

    三、解答题(共8题,共72分)
    17、(1)购买A型学习用品400件,B型学习用品600件.(2)最多购买B型学习用品1件
    【解析】
    (1)设购买A型学习用品x件,B型学习用品y件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.
    (2)设最多可以购买B型产品a件,则A型产品(1000﹣a)件,根据这批学习用品的钱不超过210元建立不等式求出其解即可.
    【详解】
    解:(1)设购买A型学习用品x件,B型学习用品y件,由题意,得
    ,解得:.
    答:购买A型学习用品400件,B型学习用品600件.
    (2)设最多可以购买B型产品a件,则A型产品(1000﹣a)件,由题意,得
    20(1000﹣a)+30a≤210,
    解得:a≤1.
    答:最多购买B型学习用品1件
    18、小亮说的对,理由见解析
    【解析】
    先根据完全平方公式和去括号法则计算,再合并同类项,最后代入计算即可求解.
    【详解】
    2(x+1)2﹣(4x﹣5)
    =2x2+4x+2﹣4x+5,
    =2x2+7,
    当x=时,原式=+7=7;
    当x=﹣时,原式=+7=7.
    故小亮说的对.
    【点睛】
    本题考查完全平方公式和去括号,解题的关键是明确完全平方公式和去括号的计算方法.
    19、(1)作图见解析;(2)1
    【解析】
    (1)以点B为圆心,任意长为半径画弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.
    (2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得∠AEB=∠EBC,利用角平分线即得∠ABE=∠EBC,即证 ∠AEB=∠ABE .根据等角对等边可得AB=AE=2,从而求出ED的长.
    【详解】
    (1)解:如图所示:

    (2)解:∵平行四边形ABCD的周长为10
    ∴AB+AD=5
    ∵AD//BC
    ∴∠AEB=∠EBC
    又∵BE平分∠ABC
    ∴∠ABE=∠EBC
    ∴∠AEB=∠ABE
    ∴AB=AE=2
    ∴ED=AD-AE=3-2=1
    【点睛】
    此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则
    20、热气球离地面的高度约为1米.
    【解析】
    作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可.
    【详解】
    解:作AD⊥BC交CB的延长线于D,

    设AD为x,
    由题意得,∠ABD=45°,∠ACD=35°,
    在Rt△ADB中,∠ABD=45°,
    ∴DB=x,
    在Rt△ADC中,∠ACD=35°,
    ∴tan∠ACD= ,
    ∴ = ,
    解得,x≈1.
    答:热气球离地面的高度约为1米.
    【点睛】
    考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.
    21、证明过程见解析
    【解析】
    由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再结合条件可证明△ABC≌△DEC.
    【详解】
    ∵∠BAE=∠BCE=∠ACD=90°,
    ∴∠5+∠4=∠4+∠3,
    ∴∠5=∠3,且∠B+∠CEA=180°,
    又∠7+∠CEA=180°,
    ∴∠B=∠7,
    在△ABC和△DEC中 ,
    ∴△ABC≌△DEC(ASA).
    22、(1);(2)
    【解析】
    【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.
    【详解】解:(1)因为1、-1、2三个数中由两个正数,
    所以从中任意取一个球,标号为正数的概率是.
    (2)因为直线y=kx+b经过一、二、三象限,
    所以k>0,b>0,
    又因为取情况:
    k b
    1
    -1
    2
    1
    1,1
    1,-1
    1,2
    -1
    -1,1
    -1,-1
    -1.2
    2
    2,1
    2,-1
    2,2
    共9种情况,符合条件的有4种,
    所以直线y=kx+b经过一、二、三象限的概率是.
    【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .
    23、(1)4%;(2)72°;(3)380人
    【解析】
    (1)根据A级人数及百分数计算九年级(1)班学生人数,用总人数减A、B、D级人数,得C级人数,再用C级人数÷总人数×360°,得C等级所在的扇形圆心角的度数;
    (2)将人数按级排列,可得该班学生体育测试成绩的中位数;
    (3)用(A级百分数+B级百分数)×1900,得这次考试中获得A级和B级的九年级学生共有的人数;
    (4)根据各等级人数多少,设计合格的等级,使大多数人能合格.
    【详解】
    解:(1)九年级(1)班学生人数为13÷26%=50人,
    C级人数为50-13-25-2=10人,
    C等级所在的扇形圆心角的度数为10÷50×360°=72°,
    故答案为72°;
    (2)共50人,其中A级人数13人,B级人数25人,
    故该班学生体育测试成绩的中位数落在B等级内,
    故答案为B;
    (3)估计这次考试中获得A级和B级的九年级学生共有(26%+25÷50)×1900=1444人;
    (4)建议:把到达A级和B级的学生定为合格,(答案不唯一).

    24、(1);(2),;(3)
    【解析】
    试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;
    (2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=2﹣1,BH=2﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;由于AD⊥y轴,则OD=1,AD=2,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=x﹣1;
    (3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0<t<2),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t, t﹣1),则MN=﹣t+1,根据三角形面积公式得到S△CMN=•t•(﹣t+1),再进行配方得到S=﹣(t﹣)2+(0<t<2),最后根据二次函数的最值问题求解.
    试题解析:(1)把A(2,1)代入y=,得k=2×1=2;
    (2)作BH⊥AD于H,如图1,
    把B(1,a)代入反比例函数解析式y=,得a=2,
    ∴B点坐标为(1,2),
    ∴AH=2﹣1,BH=2﹣1,
    ∴△ABH为等腰直角三角形,∴∠BAH=45°,
    ∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,
    ∴tan∠DAC=tan30°=;
    ∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,
    ∴CD=2,∴OC=1,
    ∴C点坐标为(0,﹣1),
    设直线AC的解析式为y=kx+b,
    把A(2,1)、C(0,﹣1)代入得 ,解得 ,
    ∴直线AC的解析式为y=x﹣1;
    (3)设M点坐标为(t,)(0<t<2),
    ∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t, t﹣1),
    ∴MN=﹣(t﹣1)=﹣t+1,
    ∴S△CMN=•t•(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),
    ∵a=﹣<0,∴当t=时,S有最大值,最大值为.


    相关试卷

    2023-2024学年河南省柘城县张桥乡联合中学九上数学期末达标检测模拟试题含答案:

    这是一份2023-2024学年河南省柘城县张桥乡联合中学九上数学期末达标检测模拟试题含答案,共8页。试卷主要包含了下列说法正确的是,在中,,,则的值是等内容,欢迎下载使用。

    河南省柘城县张桥乡联合中学2023-2024学年八上数学期末统考模拟试题含答案:

    这是一份河南省柘城县张桥乡联合中学2023-2024学年八上数学期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁, 如图,直线l,下列各式是完全平方式的是,8的立方根为等内容,欢迎下载使用。

    河南省柘城县张桥乡联合中学2022-2023学年数学七下期末检测模拟试题含答案:

    这是一份河南省柘城县张桥乡联合中学2022-2023学年数学七下期末检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map