![2022届广西南宁市兴宁区达标名校中考数学最后冲刺模拟试卷含解析第1页](http://m.enxinlong.com/img-preview/2/3/13315107/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届广西南宁市兴宁区达标名校中考数学最后冲刺模拟试卷含解析第2页](http://m.enxinlong.com/img-preview/2/3/13315107/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届广西南宁市兴宁区达标名校中考数学最后冲刺模拟试卷含解析第3页](http://m.enxinlong.com/img-preview/2/3/13315107/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022届广西南宁市兴宁区达标名校中考数学最后冲刺模拟试卷含解析
展开
这是一份2022届广西南宁市兴宁区达标名校中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了答题时请按要求用笔,下列运算结果是无理数的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.下列二次根式中,为最简二次根式的是( )
A. B. C. D.
2.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为( )
A. B.1 C. D.
3.2017年牡丹区政府工作报告指出:2012年以来牡丹区经济社会发展取得显著成就,综合实力明显提升,地区生产总值由156.3亿元增加到338亿元,年均可比增长11.4%,338亿用科学记数法表示为( )
A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×1010
4.下列博物院的标识中不是轴对称图形的是( )
A. B.
C. D.
5.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )
A. B.5 C.6 D.
6.下列运算结果是无理数的是( )
A.3× B. C. D.
7.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为( )
A.90° B.120° C.270° D.360°
8.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为( )
A. B. C. D.
9.如图,是的直径,弦,垂足为点,点是上的任意一点,延长交的延长线于点,连接.若,则等于( )
A. B. C. D.
10.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为( )
A.1:2 B.1:3 C.1:4 D.1:1
二、填空题(本大题共6个小题,每小题3分,共18分)
11.函数自变量x的取值范围是 _____.
12.如图,在△ABC中,∠ACB=90°,AC=BC=3,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=2,则sin∠BFD的值为_____.
13.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D.当△ODA是等边三角形时,这两个二次函数的最大值之和等于__.
14.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).
15.据媒体报道,我国研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,将204000这个数用科学记数法表示为_____.
16.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.
三、解答题(共8题,共72分)
17.(8分)在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两
种型号客车的载客量和租金信息:
型号
载客量
租金单价
A
30人/辆
380元/辆
B
20人/辆
280元/辆
注:载客量指的是每辆客车最多可载该校师生的人数.
(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式。
(2)若要使租车总费用不超过19720元,一共有几种租车方案?那种租车方案最省钱?
18.(8分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
19.(8分)计算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.
20.(8分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
21.(8分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.
22.(10分)对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作.如的“理想值”.
(1)①若点在直线上,则点的“理想值”等于_______;
②如图,,的半径为1.若点在上,则点的“理想值”的取值范围是_______.
(2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;
(3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值.(要求画图位置准确,但不必尺规作图)
23.(12分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.
(1)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;
(2)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.
24.(1)计算:;
(2)化简:.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).
【详解】
A. =3, 不是最简二次根式;
B. ,最简二次根式;
C. =,不是最简二次根式;
D. =,不是最简二次根式.
故选:B
【点睛】
本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.
2、B
【解析】
连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.
【详解】
如图,连接BC,
由网格可得AB=BC=,AC=,即AB2+BC2=AC2,
∴△ABC为等腰直角三角形,
∴∠BAC=45°,
则tan∠BAC=1,
故选B.
【点睛】
本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.
3、D
【解析】
根据科学记数法的定义可得到答案.
【详解】
338亿=33800000000=,
故选D.
【点睛】
把一个大于10或者小于1的数表示为的形式,其中1≤|a|
相关试卷
这是一份2023年广西南宁市兴宁区新民中学中考数学模拟试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广西壮族自治区南宁市兴宁区达标名校2021-2022学年十校联考最后数学试题含解析,共21页。
这是一份2021-2022学年广西南宁市防城港市中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)