年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届安徽省安庆宿松县联考中考考前最后一卷数学试卷含解析

    2022届安徽省安庆宿松县联考中考考前最后一卷数学试卷含解析第1页
    2022届安徽省安庆宿松县联考中考考前最后一卷数学试卷含解析第2页
    2022届安徽省安庆宿松县联考中考考前最后一卷数学试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届安徽省安庆宿松县联考中考考前最后一卷数学试卷含解析

    展开

    这是一份2022届安徽省安庆宿松县联考中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了已知,分式的值为0,则x的取值为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是(  )

    A. B. C. D.
    2.tan60°的值是( )
    A. B. C. D.
    3.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是(  )

    A.2 B. C.2 D.5
    4.运用乘法公式计算(4+x)(4﹣x)的结果是(  )
    A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x2
    5.如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为( )

    A.2 B. C. D.
    6.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为(  )

    A. B. C. D.
    7.分式的值为0,则x的取值为( )
    A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-1
    8.如图,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分别过点B,C作BE⊥AG 于点E,CF⊥AG于点F,则AE-GF的值为( )

    A.1 B. C. D.
    9.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于( )

    A.19° B.38° C.42° D.52°
    10.绿豆在相同条件下的发芽试验,结果如下表所示:
    每批粒数n
    100
    300
    400
    600
    1000
    2000
    3000
    发芽的粒数m
    96
    282
    382
    570
    948
    1904
    2850
    发芽的频率
    0.960
    0.940
    0.955
    0.950
    0.948
    0.952
    0.950
    下面有三个推断:
    ①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;
    ②根据上表,估计绿豆发芽的概率是0.95;
    ③若n为4000,估计绿豆发芽的粒数大约为3800粒.
    其中推断合理的是(  )
    A.① B.①② C.①③ D.②③
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为_____.

    12.如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线于P点,连OP,则OP2﹣OA2=__.

    13.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.
    14.正八边形的中心角为______度.
    15.将三角形纸片()按如图所示的方式折叠,使点落在边上,记为点,折痕为,已知,,若以点,,为顶点的三角形与相似,则的长度是______.

    16.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_____人次.
    三、解答题(共8题,共72分)
    17.(8分)如图,反比例函数y=(x>0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1.
    (1)求k的值;
    (1)点B为此反比例函数图象上一点,其纵坐标为2.过点B作CB∥OA,交x轴于点C,求点C的坐标.

    18.(8分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, ≈1.41, ≈1.73)

    19.(8分)珠海某企业接到加工“无人船”某零件5000个的任务.在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成.求技术改进后每天加工零件的数量.
    20.(8分)如图,抛物线y=x2﹣2mx(m>0)与x轴的另一个交点为A,过P(1,﹣m)作PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C
    (1)若m=2,求点A和点C的坐标;
    (2)令m>1,连接CA,若△ACP为直角三角形,求m的值;
    (3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.

    21.(8分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:
    17
    18
    16
    13
    24
    15
    28
    26
    18
    19
    22
    17
    16
    19
    32
    30
    16
    14
    15
    26
    15
    32
    23
    17
    15
    15
    28
    28
    16
    19
    对这30个数据按组距3进行分组,并整理、描述和分析如下.
    频数分布表
    组别







    销售额







    频数
    7
    9
    3

    2

    2
    数据分析表
    平均数
    众数
    中位数
    20.3

    18
    请根据以上信息解答下列问题:填空:a=  ,b=  ,c=  ;若将月销售额不低于25万元确定为销售目标,则有  位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.
    22.(10分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
    该年级报名参加丙组的人数为 ;该年级报名参加本次活动的总人数 ,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?
    23.(12分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.
    24.某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:
    (1)求购进的第一批文化衫的件数;
    (2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    解:∵AE平分∠BAD,
    ∴∠DAE=∠BAE;
    又∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠BEA=∠DAE=∠BAE,
    ∴AB=BE=6,
    ∵BG⊥AE,垂足为G,
    ∴AE=2AG.
    在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,
    ∴AG==2,
    ∴AE=2AG=4;
    ∴S△ABE=AE•BG=.
    ∵BE=6,BC=AD=9,
    ∴CE=BC﹣BE=9﹣6=3,
    ∴BE:CE=6:3=2:1,
    ∵AB∥FC,
    ∴△ABE∽△FCE,
    ∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.
    故选A.

    【点睛】
    本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.
    2、A
    【解析】
    根据特殊角三角函数值,可得答案.
    【详解】
    tan60°=
    故选:A.
    【点睛】
    本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
    3、C
    【解析】
    作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.
    【详解】
    解:作OH⊥AB于H,OG⊥CD于G,连接OA,
    由相交弦定理得,CE•ED=EA•BE,即EA×1=3,
    解得,AE=3,
    ∴AB=4,
    ∵OH⊥AB,
    ∴AH=HB=2,
    ∵AB=CD,CE•ED=3,
    ∴CD=4,
    ∵OG⊥CD,
    ∴EG=1,
    由题意得,四边形HEGO是矩形,
    ∴OH=EG=1,
    由勾股定理得,OA=,
    ∴⊙O的直径为,
    故选C.

    【点睛】
    此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.
    4、B
    【解析】
    根据平方差公式计算即可得解.
    【详解】

    故选:B.
    【点睛】
    本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.
    5、B
    【解析】
    作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.
    【详解】

    过P作x轴的垂线,交x轴于点A,
    ∵P(2,4),
    ∴OA=2,AP=4,.

    ∴.
    故选B.
    【点睛】
    本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.
    6、A
    【解析】
    试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.
    设BD=a,则OC=3a.
    ∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.
    在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE= = a,∴点C(a, a).
    同理,可求出点D的坐标为(1﹣a,a).
    ∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.

    7、A
    【解析】
    分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.
    【详解】
    ∵原式的值为2,
    ∴,
    ∴(x-2)(x+3)=2,即x=2或x=-3;
    又∵|x|-2≠2,即x≠±2.
    ∴x=-3.
    故选:A.
    【点睛】
    此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.
    8、D
    【解析】
    设AE=x,则AB=x,由矩形的性质得出∠BAD=∠D=90°,CD=AB,证明△ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.
    【详解】
    设AE=x,
    ∵四边形ABCD是矩形,
    ∴∠BAD=∠D=90°,CD=AB,
    ∵AG平分∠BAD,
    ∴∠DAG=45°,
    ∴△ADG是等腰直角三角形,
    ∴DG=AD=1,
    ∴AG=AD=,
    同理:BE=AE=x, CD=AB=x,
    ∴CG=CD-DG=x -1,
    同理: CG=GF,
    ∴FG= ,
    ∴AE-GF=x-(x-)=.
    故选D.
    【点睛】
    本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.
    9、D
    【解析】
    试题分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.

    考点:平行线的性质;余角和补角.
    10、D
    【解析】
    ①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.
    【详解】
    ①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;
    ②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;
    ③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.
    故选D.
    【点睛】
    本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    作DH⊥x轴于H,如图,

    当y=0时,-3x+3=0,解得x=1,则A(1,0),
    当x=0时,y=-3x+3=3,则B(0,3),
    ∵四边形ABCD为正方形,
    ∴AB=AD,∠BAD=90°,
    ∴∠BAO+∠DAH=90°,
    而∠BAO+∠ABO=90°,
    ∴∠ABO=∠DAH,
    在△ABO和△DAH中

    ∴△ABO≌△DAH,
    ∴AH=OB=3,DH=OA=1,
    ∴D点坐标为(1,1),
    ∵顶点D恰好落在双曲线y= 上,
    ∴a=1×1=1.
    故答案是:1.
    12、1
    【解析】
    解:∵直线y=x+b与双曲线 (x>0)交于点P,设P点的坐标(x,y),
    ∴x﹣y=﹣b,xy=8,
    而直线y=x+b与x轴交于A点,
    ∴OA=b.
    又∵OP2=x2+y2,OA2=b2,
    ∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.
    故答案为1.
    13、6
    【解析】
    设这个扇形的半径为,根据题意可得:
    ,解得:.
    故答案为.
    14、45°
    【解析】
    运用正n边形的中心角的计算公式计算即可.
    【详解】
    解:由正n边形的中心角的计算公式可得其中心角为,
    故答案为45°.
    【点睛】
    本题考查了正n边形中心角的计算.
    15、或2
    【解析】
    由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.
    【详解】
    由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x
    当△B’FC∽△ABC,有,得到方程,解得x=,故BF=;
    当△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;
    综上BF的长度可以为或2.
    【点睛】
    本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.
    16、8.03×106
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.803万=.

    三、解答题(共8题,共72分)
    17、(1)k=11;(1)C(2,0).
    【解析】
    试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=即可求出k的值;
    (1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可.
    试题解析:
    (1)∵点A在直线y=2x上,其横坐标为1.
    ∴y=2×1=6,∴A(1,6),
    把点A(1,6)代入,得,
    解得:k=11;
    (1)由(1)得:,
    ∵点B为此反比例函数图象上一点,其纵坐标为2,
    ∴,解得x= 4,∴B(4,2),
    ∵CB∥OA,
    ∴设直线BC的解析式为y=2x+b,
    把点B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,
    ∴直线BC的解析式为y=2x﹣9,
    当y=0时,2x﹣9=0,解得:x=2,
    ∴C(2,0).
    18、30.3米.
    【解析】
    试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.
    试题解析:过点D作DE⊥AB于点E,
    在Rt△ADE中,∠AED=90°,tan∠1=, ∠1=30°,
    ∴AE=DE× tan∠1=40×tan30°=40×≈40×1.73×≈23.1
    在Rt△DEB中,∠DEB=90°,tan∠2=, ∠2=10°,
    ∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2
    ∴AB=AE+BE≈23.1+7.2=30.3米.

    19、技术改进后每天加工1个零件.
    【解析】
    分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案.
    详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,
    根据题意可得, 解得x=100,
    经检验x=100是原方程的解,则改进后每天加工1.
    答:技术改进后每天加工1个零件.
    点睛:本题主要考查的是分式方程的应用,属于基础题型.根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验.
    20、(1)A(4,0),C(3,﹣3);(2) m=;(3) E点的坐标为(2,0)或(,0)或(0,﹣4);
    【解析】
    方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;
    (2) 先用m表示出P, A C三点的坐标,分别讨论∠APC=,∠ACP=,∠PAC=三种情况, 利用勾股定理即可求得m的值;
    (3) 设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,
    NP:NF=BC:BP求得直线PE的解析式,后利用△PEC是以P为直角顶点的等腰直角三角形求得E点坐标.
    方法二:(1)同方法一.
    (2) 由△ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;
    (3)利用△PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标.
    【详解】
    方法一:
    解:
    (1)若m=2,抛物线y=x2﹣2mx=x2﹣4x,
    ∴对称轴x=2,
    令y=0,则x2﹣4x=0,
    解得x=0,x=4,
    ∴A(4,0),
    ∵P(1,﹣2),令x=1,则y=﹣3,
    ∴B(1,﹣3),
    ∴C(3,﹣3).
    (2)∵抛物线y=x2﹣2mx(m>1),
    ∴A(2m,0)对称轴x=m,
    ∵P(1,﹣m)
    把x=1代入抛物线y=x2﹣2mx,则y=1﹣2m,
    ∴B(1,1﹣2m),
    ∴C(2m﹣1,1﹣2m),
    ∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,
    PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,
    AC2=1+(1﹣2m)2=2﹣4m+4m2,
    ∵△ACP为直角三角形,
    ∴当∠ACP=90°时,PA2=PC2+AC2,
    即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,
    解得:m=,m=1(舍去),
    当∠APC=90°时,PA2+PC2=AC2,
    即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,
    解得:m=,m=1,和1都不符合m>1,
    故m=.
    (3)设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,
    ∵∠FPN=∠PCB,∠PNF=∠CBP=90°,
    ∴Rt△FNP∽Rt△PBC,
    ∴NP:NF=BC:BP,即=,
    ∴y=2x﹣2﹣m,
    ∴直线PE的解析式为y=2x﹣2﹣m.
    令y=0,则x=1+,
    ∴E(1+m,0),
    ∴PE2=(﹣m)2+(m)2=,
    ∴=5m2﹣10m+5,解得:m=2,m=,
    ∴E(2,0)或E(,0),
    ∴在x轴上存在E点,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);
    令x=0,则y=﹣2﹣m,
    ∴E(0,﹣2﹣m)
    ∴PE2=(﹣2)2+12=5
    ∴5m2﹣10m+5=5,解得m=2,m=0(舍去),
    ∴E(0,﹣4)
    ∴y轴上存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(0,﹣4),
    ∴在坐标轴上是存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(,0)或(0,﹣4);
    方法二:
    (1)略.
    (2)∵P(1,﹣m),
    ∴B(1,1﹣2m),
    ∵对称轴x=m,
    ∴C(2m﹣1,1﹣2m),A(2m,0),
    ∵△ACP为直角三角形,
    ∴AC⊥AP,AC⊥CP,AP⊥CP,
    ①AC⊥AP,∴KAC×KAP=﹣1,且m>1,
    ∴,m=﹣1(舍)
    ②AC⊥CP,∴KAC×KCP=﹣1,且m>1,
    ∴=﹣1,∴m=,
    ③AP⊥CP,∴KAP×KCP=﹣1,且m>1,
    ∴=﹣1,∴m=(舍)
    (3)∵P(1,﹣m),C(2m﹣1,1﹣2m),
    ∴KCP=,
    △PEC是以P为直角顶点的等腰直角三角形,
    ∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,
    ∵P(1,﹣m),
    ∴lPE:y=2x﹣2﹣m,
    ∵点E在坐标轴上,
    ∴①当点E在x轴上时,
    E(,0)且PE=PC,
    ∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
    ∴m2=5(m﹣1)2,
    ∴m1=2,m2=,
    ∴E1(2,0),E2(,0),
    ②当点E在y轴上时,E(0,﹣2﹣m)且PE=PC,
    ∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
    ∴1=(m﹣1)2,
    ∴m1=2,m2=0(舍),
    ∴E(0,4),
    综上所述,(2,0)或(,0)或(0,﹣4).
    【点睛】
    本题主要考查二次函数的图象与性质.
    扩展:
    设坐标系中两点坐标分别为点A(), 点B(), 则线段AB的长度为:
    AB=.
    设平面内直线AB的解析式为:,直线CD的解析式为:
    (1)若AB//CD,则有:;
    (2)若AB⊥CD,则有:.
    21、 (1) 众数为15;(2) 3,4,15;8;(3) 月销售额定为18万,有一半左右的营业员能达到销售目标.
    【解析】
    根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a=3,b=4,再根据数据可得15出现了5次,出现次数最多,所以众数c=15;
    从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;
    本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.
    【详解】
    解:(1)在范围内的数据有3个,在范围内的数据有4个,
    15出现的次数最大,则众数为15;
    (2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;
    故答案为3,4,15;8;
    (3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.
    因为中位数为18,即大于18与小于18的人数一样多,
    所以月销售额定为18万,有一半左右的营业员能达到销售目标.
    【点睛】
    本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.
    22、(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组
    【解析】
    (1)参加丙组的人数为21人;
    (2)21÷10%=10人,则乙组人数=10-21-11=10人,
    如图:

    (3)设需从甲组抽调x名同学到丙组,
    根据题意得:3(11-x)=21+x
    解得x=1.
    答:应从甲抽调1名学生到丙组
    (1)直接根据条形统计图获得数据;
    (2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;
    (3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解
    23、 (x﹣y)2;2.
    【解析】
    首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.
    【详解】
    原式= x2﹣4y2+4xy(5y2-2xy)÷4xy
    =x2﹣4y2+5y2﹣2xy
    =x2﹣2xy+y2,
    =(x﹣y)2,
    当x=2028,y=2时,
    原式=(2028﹣2)2=(﹣2)2=2.
    【点睛】
    本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.
    24、(1)50件;(2)120元.
    【解析】
    (1)设第一批购进文化衫x件,根据数量=总价÷单价结合第二批每件文化衫的进价比第一批每件文化衫的进价多10元,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)根据第二批购进的件数比第一批多40%,可求出第二批的进货数量,设该服装店销售该品牌文化衫每件的售价为y元,根据利润=销售单价×销售数量-进货总价,即可得出关于y的一元一次不等式,解之取其内的最小值即可得出结论.
    【详解】
    解:(1)设第一批购进文化衫x件,
    根据题意得: +10=,
    解得:x=50,
    经检验,x=50是原方程的解,且符合题意,
    答:第一批购进文化衫50件;
    (2)第二批购进文化衫(1+40%)×50=70(件),
    设该服装店销售该品牌文化衫每件的售价为y元,
    根据题意得:(50+70)y﹣4000﹣6300≥4100,
    解得:y≥120,
    答:该服装店销售该品牌文化衫每件最低售价为120元.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.

    相关试卷

    安徽省和县联考2021-2022学年中考考前最后一卷数学试卷含解析:

    这是一份安徽省和县联考2021-2022学年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了若分式的值为零,则x的值是,方程x2+2x﹣3=0的解是,若点A,若△÷,则“△”可能是,下列实数中,无理数是,下列计算正确的是等内容,欢迎下载使用。

    2022年安徽省庐江县中考考前最后一卷数学试卷含解析:

    这是一份2022年安徽省庐江县中考考前最后一卷数学试卷含解析,共20页。

    2022年安徽省芜湖繁昌县联考中考考前最后一卷数学试卷含解析:

    这是一份2022年安徽省芜湖繁昌县联考中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,一、单选题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map