2021-2022学年江西省全南县中考数学仿真试卷含解析
展开
这是一份2021-2022学年江西省全南县中考数学仿真试卷含解析,共21页。试卷主要包含了若点,已知下列命题等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,直线a∥b,直线分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是
A.50° B.70° C.80° D.110°
2.下列计算正确的是( )
A.a2+a2=2a4 B.(﹣a2b)3=﹣a6b3 C.a2•a3=a6 D.a8÷a2=a4
3.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )
A.360元 B.720元 C.1080元 D.2160元
4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )
A. B. C. D.
5.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是( )
用水量x(吨)
3
4
5
6
7
频数
1
2
5
4﹣x
x
A.平均数、中位数 B.众数、中位数 C.平均数、方差 D.众数、方差
6.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
7.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
中位数
众数
平均数
方差
9.2
9.3
9.1
0.3
A.中位数 B.众数 C.平均数 D.方差
8.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是( )
A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x1
9.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为( )
A. B. C. D.
10.若关于x的方程=3的解为正数,则m的取值范围是( )
A.m< B.m<且m≠
C.m>﹣ D.m>﹣且m≠﹣
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是_____.
12.解不等式组
请结合题意填空,完成本题的解答.
(1)解不等式①,得________;
(2)解不等式②,得________;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为___________.
13.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是_____.
14.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_____.
15.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=(k≠0)的图象恰好经过A′,B,则k的值为_____.
16.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.
三、解答题(共8题,共72分)
17.(8分)2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.
18.(8分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.
19.(8分)如图,AB是⊙O的直径,弦DE交AB于点F,⊙O的切线BC与AD的延长线交于点C,连接AE.
(1)试判断∠AED与∠C的数量关系,并说明理由;
(2)若AD=3,∠C=60°,点E是半圆AB的中点,则线段AE的长为 .
20.(8分)已知P是的直径BA延长线上的一个动点,∠P的另一边交于点C、D,两点位于AB的上方,=6,OP=m,,如图所示.另一个半径为6的经过点C、D,圆心距.
(1)当m=6时,求线段CD的长;
(2)设圆心O1在直线上方,试用n的代数式表示m;
(3)△POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由.
21.(8分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为6,BC=8,求弦BD的长.
22.(10分)在平面直角坐标系中,已知直线y=﹣x+4和点M(3,2)
(1)判断点M是否在直线y=﹣x+4上,并说明理由;
(2)将直线y=﹣x+4沿y轴平移,当它经过M关于坐标轴的对称点时,求平移的距离;
(3)另一条直线y=kx+b经过点M且与直线y=﹣x+4交点的横坐标为n,当y=kx+b随x的增大而增大时,则n取值范围是_____.
23.(12分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是 ;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.
24.已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.
【详解】
因为a∥b,
所以∠1=∠BAD=50°,
因为AD是∠BAC的平分线,
所以∠BAC=2∠BAD=100°,
所以∠2=180°-∠BAC=180°-100°=80°.
故本题正确答案为C.
【点睛】
本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.
2、B
【解析】
解:A.a2+a2=2a2,故A错误;
C、a2a3=a5,故C错误;
D、a8÷a2=a6,故D错误;
本题选B.
考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方
3、C
【解析】
根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.
【详解】
3m×2m=6m2,
∴长方形广告牌的成本是120÷6=20元/m2,
将此广告牌的四边都扩大为原来的3倍,
则面积扩大为原来的9倍,
∴扩大后长方形广告牌的面积=9×6=54m2,
∴扩大后长方形广告牌的成本是54×20=1080元,
故选C.
【点睛】
本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.
4、B
【解析】
分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.
详解:画树状图,得
∴共有8种情况,经过每个路口都是绿灯的有一种,
∴实际这样的机会是.
故选B.
点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.
5、B
【解析】
由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.
【详解】
∵6吨和7吨的频数之和为4-x+x=4,
∴频数之和为1+2+5+4=12,
则这组数据的中位数为第6、7个数据的平均数,即=5,
∴对于不同的正整数x,中位数不会发生改变,
∵后两组频数和等于4,小于5,
∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.
故选B.
【点睛】
本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.
6、A
【解析】
①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
②正确.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;
③正确.只要证明DM垂直平分CF,即可证明;
④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,可得tan∠CAD===.
【详解】
如图,过D作DM∥BE交AC于N.
∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.
∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;
∵AD∥BC,∴△AEF∽△CBF,∴=.
∵AE=AD=BC,∴=,∴CF=2AF,故②正确;
∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF.
∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;
设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,∴tan∠CAD===.故④正确.
故选A.
【点睛】
本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.
7、A
【解析】
根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.
【详解】
如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.
故选A.
点睛:本题主要考查了中位数,关键是掌握中位数定义.
8、D
【解析】
先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.
【详解】
解:∵反比例函数y=﹣中k=﹣1<0,
∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,
∵y1<0<y2<y3,
∴点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,
∴x2<x3<x1.
故选:D.
【点睛】
本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.
9、B
【解析】
∵①对顶角相等,故此选项正确;
②若a>b>0,则<,故此选项正确;
③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;
④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;
⑤边长相等的多边形内角不一定都相等,故此选项错误;
∴从中任选一个命题是真命题的概率为:.
故选:B.
10、B
【解析】
解:去分母得:x+m﹣3m=3x﹣9,
整理得:2x=﹣2m+9,解得:x=,
已知关于x的方程=3的解为正数,
所以﹣2m+9>0,解得m<,
当x=3时,x==3,解得:m=,
所以m的取值范围是:m<且m≠.
故答案选B.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
分析:要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.
解答:
解:如图,连接BM,
∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.
故答案为1.
点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用.
12、(1)x<1;(2)x≥﹣2;(1)见解析;(4)﹣2≤x<1;
【解析】
(1)先移项,再合并同类项,求出不等式1的解集即可;
(2)先去分母、移项,再合并同类项,求出不等式2的解集即可;
(1)把两不等式的解集在数轴上表示出来即可;
(4)根据数轴上不等式的解集,求出其公共部分即可.
【详解】
(1)解不等式①,得:x<1;
(2)解不等式②,得:x≥﹣2;
(1)把不等式①和②的解集在数轴上表示出来如下:
(4)原不等式组的解集为:﹣2≤x<1,
故答案为:x<1、x≥﹣2、﹣2≤x<1.
【点睛】
本题主要考查一元一次不等式组的解法及在数轴上的表示。
13、71
【解析】
分析:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.
详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则
x2=4y2+52,
∵△BCD的周长是30,
∴x+2y+5=30
则x=13,y=1.
∴这个风车的外围周长是:4(x+y)=4×19=71.
故答案是:71.
点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.
14、60%
【解析】
设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x,y的二元一次方程,解之即可得出x,y之间的关系,进而即可得出结论.
【详解】
设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,
依题意,得:(1﹣25%)(ax+2ay)=2ax+ay,
解得:x=0.4y,
∴该地区空闲时段民用电的单价比高峰时段的用电单价低×100%=60%.
故答案为60%.
【点睛】
本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
15、
【解析】
解:∵四边形ABCO是矩形,AB=1,
∴设B(m,1),∴OA=BC=m,
∵四边形OA′B′D与四边形OABD关于直线OD对称,
∴OA′=OA=m,∠A′OD=∠AOD=30°
∴∠A′OA=60°,
过A′作A′E⊥OA于E,
∴OE=m,A′E=m,
∴A′(m,m),
∵反比例函数(k≠0)的图象恰好经过点A′,B,
∴ m•m=m,∴m=,∴k=
故答案为
16、7
【解析】
首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.
【详解】
根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,
∴,
∴最多是7个,
故答案为:7.
【点睛】
本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.
三、解答题(共8题,共72分)
17、原计划每天安装100个座位.
【解析】
根据题意先设原计划每天安装x个座位,列出方程再求解.
【详解】
解:设原计划每天安装个座位,采用新技术后每天安装个座位,
由题意得:.
解得:.
经检验:是原方程的解.
答:原计划每天安装100个座位.
【点睛】
此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.
18、见解析
【解析】
试题分析:已知AB∥CD,根据两直线平行,内错角相等可得∠B=∠ECD,再根据SAS证明△ABC≌△ECD全,由全等三角形对应边相等即可得AC=ED.
试题解析:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS),∴AC=ED.
考点:平行线的性质;全等三角形的判定及性质.
19、(1)∠AED=∠C,理由见解析;(2)
【解析】
(1)根据切线的性质和圆周角定理解答即可;
(2)根据勾股定理和三角函数进行解答即可.
【详解】
(1)∠AED=∠C,证明如下:
连接BD,
可得∠ADB=90°,
∴∠C+∠DBC=90°,
∵CB是⊙O的切线,
∴∠CBA=90°,
∴∠ABD+∠DBC=90°,
∴∠ABD=∠C,
∵∠AEB=∠ABD,
∴∠AED=∠C,
(2)连接BE,
∴∠AEB=90°,
∵∠C=60°,
∴∠CAB=30°,
在Rt△DAB中,AD=3,∠ADB=90°,
∴cos∠DAB=,
解得:AB=2,
∵E是半圆AB的中点,
∴AE=BE,
∵∠AEB=90°,
∴∠BAE=45°,
在Rt△AEB中,AB=2,∠ADB=90°,
∴cos∠EAB=,
解得:AE=.
故答案为
【点睛】
此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.
20、 (1)CD=;(2)m= ;(3) n的值为或
【解析】
分析:(1)过点作⊥,垂足为点,连接.解Rt△,得到的长.由勾股定理得的长,再由垂径定理即可得到结论;
(2)解Rt△,得到和Rt△中,由勾股定理即可得到结论;
(3)△成为等腰三角形可分以下几种情况讨论:① 当圆心、在弦异侧时,分和.②当圆心、在弦同侧时,同理可得结论.
详解:(1)过点作⊥,垂足为点,连接.
在Rt△,∴.
∵=6,∴.
由勾股定理得: .
∵⊥,∴.
(2)在Rt△,∴.
在Rt△中,.
在Rt△中,.
可得: ,解得.
(3)△成为等腰三角形可分以下几种情况:
① 当圆心、在弦异侧时
i),即,由,解得.
即圆心距等于、的半径的和,就有、外切不合题意舍去.
ii),由 ,
解得:,即 ,解得.
②当圆心、在弦同侧时,同理可得: .
∵是钝角,∴只能是,即,解得.
综上所述:n的值为或.
点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.
21、(1)详见解析;(2)BD=9.6.
【解析】
试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD, ,再由圆周角定理可得 ,从而得到∠ OBE+∠ DBC=90°,即 ,命题得证.
(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.
试题解析:(1)证明:如下图所示,连接OB.
∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,,
∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.
(2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
∵ ,∴ ,
∴.
点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.
22、(1)点M(1,2)不在直线y=﹣x+4上,理由见解析;(2)平移的距离为1或2;(1)2<n<1.
【解析】
(1)将x=1代入y=-x+4,求出y=-1+4=1≠2,即可判断点M(1,2)不在直线y=-x+4上;
(2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b.分两种情况进行讨论:①点M(1,2)关于x轴的对称点为点M1(1,-2);②点M(1,2)关于y轴的对称点为点M2(-1,2).分别求出b的值,得到平移的距离;
(1)由直线y=kx+b经过点M(1,2),得到b=2-1k.由直线y=kx+b与直线y=-x+4交点的横坐标为n,得出y=kn+b=-n+4,k=.根据y=kx+b随x的增大而增大,得到k>0,即>0,那么①,或②,分别解不等式组即可求出n的取值范围.
【详解】
(1)点M不在直线y=﹣x+4上,理由如下:
∵当x=1时,y=﹣1+4=1≠2,
∴点M(1,2)不在直线y=﹣x+4上;
(2)设直线y=﹣x+4沿y轴平移后的解析式为y=﹣x+4+b.
①点M(1,2)关于x轴的对称点为点M1(1,﹣2),
∵点M1(1,﹣2)在直线y=﹣x+4+b上,
∴﹣2=﹣1+4+b,
∴b=﹣1,
即平移的距离为1;
②点M(1,2)关于y轴的对称点为点M2(﹣1,2),
∵点M2(﹣1,2)在直线y=﹣x+4+b上,
∴2=1+4+b,
∴b=﹣2,
即平移的距离为2.
综上所述,平移的距离为1或2;
(1)∵直线y=kx+b经过点M(1,2),
∴2=1k+b,b=2﹣1k.
∵直线y=kx+b与直线y=﹣x+4交点的横坐标为n,
∴y=kn+b=﹣n+4,
∴kn+2﹣1k=﹣n+4,
∴k=.
∵y=kx+b随x的增大而增大,
∴k>0,即>0,
∴①,或②,
不等式组①无解,不等式组②的解集为2<n<1.
∴n的取值范围是2<n<1.
故答案为2<n<1.
【点睛】
本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握.
23、(1)10;(2);(3)9环
【解析】
(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.
(2)先求这组成绩的平均数,再求这组成绩的方差;
(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.
【详解】
解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10;
(2)嘉淇射击成绩的平均数为:,
方差为: .
(3)原来7次成绩为7 8 9 9 10 10 10,
原来7次成绩的中位数为9,
当第8次射击成绩为10时,得到8次成绩的中位数为9.5,
当第8次射击成绩小于10时,得到8次成绩的中位数均为9,
因此第8次的射击成绩的最大环数为9环.
【点睛】
本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键.
24、证明见解析
【解析】
试题分析:先利用等角的余角相等得到根据有两组角对应相等,即可证明两三角形相似.
试题解析:∵四边形为矩形,
于点F,
点睛:两组角对应相等,两三角形相似.
相关试卷
这是一份江西省南昌育华校2021-2022学年中考数学仿真试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,的算术平方根为,四组数中等内容,欢迎下载使用。
这是一份江西省会昌县市级名校2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,若关于x的一元二次方程等内容,欢迎下载使用。
这是一份江西省抚州市南城县市级名校2021-2022学年中考数学仿真试卷含解析,共21页。试卷主要包含了直线y=3x+1不经过的象限是等内容,欢迎下载使用。