山西省洪洞县2022年中考数学模拟预测试卷含解析
展开
这是一份山西省洪洞县2022年中考数学模拟预测试卷含解析,共20页。试卷主要包含了已知,,且,则的值为,关于的叙述正确的是,下列运算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题(共10小题,每小题3分,共30分)1.函数y=ax2与y=﹣ax+b的图象可能是( )A. B.C. D.2.下列说法错误的是( )A.必然事件的概率为1B.数据1、2、2、3的平均数是2C.数据5、2、﹣3、0的极差是8D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖3.如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是( )A.7 B.10 C.11 D.124.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是( )A. B. C. D.5.已知,,且,则的值为( )A.2或12 B.2或 C.或12 D.或6.在﹣3,﹣1,0,1四个数中,比﹣2小的数是( )A.﹣3 B.﹣1 C.0 D.17.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是( )A.甲组同学身高的众数是160B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大8.关于的叙述正确的是( )A.= B.在数轴上不存在表示的点C.=± D.与最接近的整数是39.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab10.下列运算正确的是( )A.(a2)5=a7 B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3 D.a2•a4=a6二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,△ABC中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设=,=,用,表示,那么=___.12.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为_____.13.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .14.正十二边形每个内角的度数为 .15.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.16.如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_____.三、解答题(共8题,共72分)17.(8分)如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.18.(8分)先化简,再求值:,其中a为不等式组的整数解.19.(8分)已知反比例函数的图象过点A(3,2).(1)试求该反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.20.(8分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.求A,B两种品牌的足球的单价.求该校购买20个A品牌的足球和2个B品牌的足球的总费用.21.(8分)如图,的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.在图1中画出边上的中线;在图2中画出,使得.22.(10分)如图,直线y=﹣x+2与反比例函数 (k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.23.(12分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于1.(1)分别判断函数y=﹣x+1,y=,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.24.为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A.会;B.不会;C.有时会),绘制了两幅不完整的统计图(如图)(1)这次被抽查的学生共有______人,扇形统计图中,“A组”所对应的圆心度数为______;(2)补全两个统计图;(3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.
参考答案 一、选择题(共10小题,每小题3分,共30分)1、B【解析】选项中,由图可知:在,;在,,∴,所以A错误;选项中,由图可知:在,;在,,∴,所以B正确;选项中,由图可知:在,;在,,∴,所以C错误;选项中,由图可知:在,;在,,∴,所以D错误.故选B.点睛:在函数与中,相同的系数是“”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.2、D【解析】试题分析:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B.数据1、2、2、3的平均数是=2,本项正确;C.这些数据的极差为5﹣(﹣3)=8,故本项正确;D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选D.考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件3、B【解析】∵四边形ABCD是平行四边形,
∴AD=BC=4,CD=AB=6,
∵由作法可知,直线MN是线段AC的垂直平分线,
∴AE=CE,
∴AE+DE=CE+DE=AD,
∴△CDE的周长=CE+DE+CD=AD+CD=4+6=1.
故选B.4、C【解析】
列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【详解】解:列表得: ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为=,故选C.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.5、D【解析】
根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.故选D.6、A【解析】
因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A.【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.7、D【解析】
根据众数、中位数和平均数及方差的定义逐一判断可得.【详解】A.甲组同学身高的众数是160,此选项正确;B.乙组同学身高的中位数是161,此选项正确;C.甲组同学身高的平均数是161,此选项正确;D.甲组的方差为,乙组的方差为,甲组的方差大,此选项错误.故选D.【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键.8、D【解析】
根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.【详解】选项A,+无法计算;选项B,在数轴上存在表示的点;选项C,;选项D,与最接近的整数是=1.故选D.【点睛】本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.9、B【解析】
根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.10、D【解析】
根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.【详解】A、(a2)5=a10,故原题计算错误;B、(x﹣1)2=x2﹣2x+1,故原题计算错误;C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;D、a2•a4=a6,故原题计算正确;故选:D.【点睛】此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则. 二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
连接AG,延长AG交BC于F.首先证明DG=GE,再利用三角形法则求出即可解决问题.【详解】连接AG,延长AG交BC于F.
∵G是△ABC的重心,DE∥BC,
∴BF=CF,
,
∵,,
∴,
∵BF=CF,
∴DG=GE,
∵,,
∴,
∴,
故答案为.【点睛】本题考查三角形的重心,平行线的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12、1【解析】
根据题意得出△AOD∽△OCE,进而得出,即可得出k=EC×EO=1.【详解】解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴ =tan60°= ,∴= =1,∵点A是双曲线y=- 在第二象限分支上的一个动点,∴S△AOD=×|xy|= ,∴S△EOC= ,即×OE×CE=,∴k=OE×CE=1,故答案为1.【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD∽△OCE是解题关键.13、y3>y1>y2.【解析】试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.考点:二次函数的函数值比较大小.14、【解析】
首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.【详解】试题分析:正十二边形的每个外角的度数是:=30°,则每一个内角的度数是:180°﹣30°=150°.故答案为150°.15、【解析】试题分析:因为OC=OA,所以∠ACO=,所以∠AOC=45°,又直径垂直于弦,,所以CE=,所以CD=2CE=.考点:1.解直角三角形、2.垂径定理.16、6【解析】
点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当⊙O与⊙M外切时,AB最小,根据条件求出AO即可求解;【详解】解:点P在以O为圆心OA为半径的圆上,∴P是两个圆的交点,当⊙O与⊙M外切时,AB最小,∵⊙M的半径为2,圆心M(3,4),∴PM=5,∴OA=3,∴AB=6,故答案为6;【点睛】本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB最小是解题的关键. 三、解答题(共8题,共72分)17、(1)作图见解析;(2)证明见解析;【解析】
(1)①以C为圆心,任意长为半径画弧,交CB、CA于E、F;②以A为圆心,CE长为半径画弧,交AB于G;③以G为圆心,EF长为半径画弧,两弧交于H;④连接AH并延长交BC于D,则∠BAD=∠C;(2)证明△ABD∽△CBA,然后根据相似三角形的性质得到结论.【详解】(1)如图,∠BAD为所作;(2)∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD•BC.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线).也考查了相似三角形的判定与性质.18、,1【解析】
先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可.【详解】解:原式=[﹣]==,∵不等式组的解为<a<5,其整数解是2,3,4,a不能等于0,2,4,∴a=3,当a=3时,原式==1.【点睛】本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.19、(1);(2)MB=MD.【解析】
(1)将A(3,2)分别代入y= ,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)有S△OMB=S△OAC=×=3 ,可得矩形OBDC的面积为12;即OC×OB=12 ;进而可得m、n的值,故可得BM与DM的大小;比较可得其大小关系.【详解】(1)将A(3,2)代入中,得2,∴k=6,∴反比例函数的表达式为.(2)BM=DM,理由:∵S△OMB=S△OAC=×=3,∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,即OC·OB=12,∵OC=3,∴OB=4,即n=4,∴, ∴MB=,MD=,∴MB=MD.【点睛】本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.20、(1)一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)1.【解析】
(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;(2)把(1)中的数据代入求值即可.【详解】(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:,解得:.答:一个A品牌的足球需40元,则一个B品牌的足球需100元;(2)依题意得:20×40+2×100=1(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1元.考点:二元一次方程组的应用.21、(1)见解析;(2)见解析.【解析】
(1)利用矩形的性质得出AB的中点,进而得出答案.(2)利用矩形的性质得出AC、BC的中点,连接并延长,使延长线段与连接这两个中点的线段相等.【详解】(1)如图所示:CD即为所求.(2)【点睛】本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键.22、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).【解析】
(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.【详解】(1)∵直线y=-x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵点A(-1,3)在反比例函数y=上,∴k=-1×3=-3,∴反比例函数解析式为y=; (2)设点P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=AC×|xP−xA|=×3×|n+1|,S△BDP=BD×|xB−xP|=×1×|3−n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1+或m=−1−(舍),∴M(−1+,0)③当MB=AB时,(m−3)2+1=32,∴m=3+或m=3−(舍),∴M(3+,0)即:满足条件的M(−1+,0)或(3+,0).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.23、(1)y=−有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.【解析】
(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=时,m=±1,∴n=1﹣(﹣1)=2,故y=有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣2,∴n=0﹣(﹣2)=2,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.24、(1)50 ,108°(2)见解析;(3)600人;(4)不正确,见解析.【解析】
(1)由C组人数及其所占百分比可得总人数,用360°乘以A组人数所占比例可得;(2)根据百分比之和为1求得A组百分比补全图1,总人数乘以B的百分比求得其人数即可补全图2;(3)总人数乘以样本中A所占百分比可得;(4)由样本中浪费粮食的人数所占比例不是20%即可作出判断.【详解】(1)这次被抽查的学生共有25÷50%=50人,扇形统计图中,“A组”所对应的圆心度数为360°×=108°,故答案为50、108°;(2)图1中A对应的百分比为1-20%-50%=30%,图2中B类别人数为50×20%=5,补全图形如下:(3)估计“每天都会节约粮食”的学生人数为2000×30%=600人;(4)不正确,因为在样本中浪费粮食的人数所占比例不是20%,所以这种说法不正确.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.
相关试卷
这是一份山西省(同盛地区)2022年中考数学模拟预测试卷含解析,共18页。
这是一份山西省大同市云冈区2021-2022学年中考数学模拟预测试卷含解析,共23页。试卷主要包含了已知点A等内容,欢迎下载使用。
这是一份山西省2022年中考数学模拟预测题含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中正确的是等内容,欢迎下载使用。