江苏省无锡市江阴中学2022年中考联考数学试题含解析
展开这是一份江苏省无锡市江阴中学2022年中考联考数学试题含解析,共17页。试卷主要包含了不等式组的解集是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.化简的结果是( )
A.﹣ B.﹣ C.﹣ D.﹣
2.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是( )
A.点P在⊙O内 B.点P在⊙O外 C.点P在⊙O上 D.无法判断
3.下列实数中是无理数的是( )
A. B.π C. D.
4.不等式组的解集是( )
A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤4
5.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的( )
A.H或N B.G或H C.M或N D.G或M
6.等式成立的x的取值范围在数轴上可表示为( )
A. B. C. D.
7.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为( )
A.5 B.7 C.8 D.10
8.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是( )
A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD
9.在△ABC中,∠C=90°,,那么∠B的度数为( )
A.60° B.45° C.30° D.30°或60°
10.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)
12.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.
13.已知点A(x1, y1)、B(x2, y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________.
14.如果关于x的方程(m为常数)有两个相等实数根,那么m=______.
15.二次根式中字母x的取值范围是_____.
16.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.
17.的算术平方根是_____.
三、解答题(共7小题,满分69分)
18.(10分)阅读下列材料:
材料一:
早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.
材料二:
以下是某同学根据网上搜集的数据制作的年度中国国家博物馆参观人数及年增长率统计表.
年度 | 2013 | 2014 | 2015 | 2016 | 2017 |
参观人数(人次) | 7 450 000 | 7 630 000 | 7 290 000 | 7 550 000 | 8 060 000 |
年增长率(%) | 38.7 | 2.4 | -4.5 | 3.6 | 6.8 |
他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.
根据以上信息解决下列问题:
(1)补全以下两个统计图;
(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.
19.(5分)已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=1.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.
20.(8分)如图所示,在▱ABCD中,E是CD延长线上的一点,BE与AD交于点F,DE=CD.
(1)求证:△ABF∽△CEB;
(2)若△DEF的面积为2,求▱ABCD的面积.
21.(10分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴于D,若OB=1,OD=6,△AOB的面积为1.求一次函数与反比例函数的表达式;当x>0时,比较kx+b与的大小.
22.(10分)已知:如图,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,⊙P与x轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:
(发现)(1)的长度为多少;
(2)当t=2s时,求扇形MPN(阴影部分)与Rt△ABO重叠部分的面积.
(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.
(拓展)当与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.
23.(12分)解不等式组,并把它的解集表示在数轴上.
24.(14分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.
(1)求A、B两种钢笔每支各多少元?
(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?
(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
试题解析:原式=.
故选C.
考点:二次根式的乘除法.
2、B
【解析】
比较OP与半径的大小即可判断.
【详解】
,,
,
点P在外,
故选B.
【点睛】
本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.
3、B
【解析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
A、是分数,属于有理数;
B、π是无理数;
C、=3,是整数,属于有理数;
D、-是分数,属于有理数;
故选B.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
4、D
【解析】
试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.
5、C
【解析】
根据两三角形三条边对应成比例,两三角形相似进行解答
【详解】
设小正方形的边长为1,则△ABC的各边分别为3、、,只能F是M或N时,其各边是6、2,2.与△ABC各边对应成比例,故选C
【点睛】
本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键
6、B
【解析】
根据二次根式有意义的条件即可求出的范围.
【详解】
由题意可知: ,
解得:,
故选:.
【点睛】
考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.
7、A
【解析】
解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长====1.故选A.
8、D
【解析】
根据垂径定理判断即可.
【详解】
连接DA.
∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.
∵2∠DAB=∠BOD,∴∠CAD=∠BOD.
故选D.
【点睛】
本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.
9、C
【解析】
根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.
【详解】
解:∵,
∴∠A=60°.
∵∠C=90°,
∴∠B=90°-60°=30°.
点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.
10、B
【解析】
阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
【详解】
由旋转可知AD=BD,
∵∠ACB=90°,AC=2,
∴CD=BD,
∵CB=CD,
∴△BCD是等边三角形,
∴∠BCD=∠CBD=60°,
∴BC=AC=2,
∴阴影部分的面积=2×2÷2−=2−.
故答案选:B.
【点睛】
本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.
二、填空题(共7小题,每小题3分,满分21分)
11、或
【解析】
因为,, ,所以 ,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.
【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.
12、
【解析】
根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.
【详解】
解:所有可能的结果如下表:
| 男1 | 男2 | 女1 | 女2 |
男1 |
| (男1,男2) | (男1,女1) | (男1,女2) |
男2 | (男2,男1) |
| (男2,女1) | (男2,女2) |
女1 | (女1,男1) | (女1,男2) |
| (女1,女2) |
女2 | (女2,男1) | (女2,男2) | (女2,女1) |
|
由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种,
所以其概率为挑选的两位教师恰好是一男一女的概率为=,
故答案为.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
13、y1>y1
【解析】分析:直接利用一次函数的性质分析得出答案.
详解:∵直线经过第一、二、四象限,
∴y随x的增大而减小,
∵x1<x1,
∴y1与y1的大小关系为:y1>y1.
故答案为:>.
点睛:此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.
14、1
【解析】
析:本题需先根据已知条件列出关于m的等式,即可求出m的值.
解答:解:∵x的方程x2-2x+m=0(m为常数)有两个相等实数根
∴△=b2-4ac=(-2)2-4×1?m=0
4-4m=0
m=1
故答案为1
15、x≤1
【解析】
二次根式有意义的条件就是被开方数是非负数,即可求解.
【详解】
根据题意得:1﹣x≥0,
解得x≤1.
故答案为:x≤1
【点睛】
主要考查了二次根式的意义和性质.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
16、12
【解析】
连接AO,BO,CO,如图所示:
∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,
∴∠AOB==60°,∠AOC==90°,
∴∠BOC=30°,
∴n==12,
故答案为12.
17、
【解析】
∵=8,()2=8,
∴的算术平方根是.
故答案为:.
三、解答题(共7小题,满分69分)
18、(1)见解析;(2)答案不唯一,预估理由合理,支撑预估数据即可
【解析】
分析:(1)根据2015年网络售票占17.33%,2017年8月实现网络售票占比77%,2017年10月2日,首次实现全部网络售票,即可补全图1,根据2016年度中国国家博物馆参观人数及年增长率,即可补全图2;(2)根据近两年平均每年增长385000人次,即可预估2018年中国国家博物馆的参观人数.
详解:(1)补全统计图如
(2)近两年平均每年增长385000人次,预估2018年中国国家博物馆的参观人数为8445000人次.(答案不唯一,预估理由合理,支撑预估数据即可.)
点睛:本题考查了统计表、折线统计图的应用,关键是正确从统计表中得到正确的信息,折线统计图表示的是事物的变化情况.
19、(1)m≥﹣;(2)m=2.
【解析】
(1)利用判别式的意义得到(2m+3)2﹣4(m2+2)≥1,然后解不等式即可;
(2)根据题意x1+x2=2m+3,x1x2=m2+2,由条件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=1,所以2m+3)2﹣3(m2+2)﹣31=1,然后解关于m的方程,最后利用m的范围确定满足条件的m的值.
【详解】
(1)根据题意得(2m+3)2﹣4(m2+2)≥1,
解得m≥﹣;
(2)根据题意x1+x2=2m+3,x1x2=m2+2,
因为x1x2=m2+2>1,
所以x12+x22=31+x1x2,
即(x1+x2)2﹣3x1x2﹣31=1,
所以(2m+3)2﹣3(m2+2)﹣31=1,
整理得m2+12m﹣28=1,解得m1=﹣14,m2=2,
而m≥﹣;
所以m=2.
【点睛】
本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,.灵活应用整体代入的方法计算.
20、(1)见解析;(2)16
【解析】
试题分析:(1)要证△ABF∽△CEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用AB∥CD,可得一对内错角相等,则可证.
(2)由于△DEF∽△EBC,可根据两三角形的相似比,求出△EBC的面积,也就求出了四边形BCDF的面积.同理可根据△DEF∽△AFB,求出△AFB的面积.由此可求出▱ABCD的面积.
试题解析:(1)证明:∵四边形ABCD是平行四边形
∴∠A=∠C,AB∥CD
∴∠ABF=∠CEB
∴△ABF∽△CEB
(2)解:∵四边形ABCD是平行四边形
∴AD∥BC,AB平行且等于CD
∴△DEF∽△CEB,△DEF∽△ABF
∵DE=CD
∴,
∵S△DEF=2
S△CEB=18,S△ABF=8,
∴S四边形BCDF=S△BCE-S△DEF=16
∴S四边形ABCD=S四边形BCDF+S△ABF=16+8=1.
考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.
21、 (1) ,;(2) 当0<x<6时,kx+b<,当x>6时,kx+b>
【解析】
(1)根据点A和点B的坐标求出一次函数的解析式,再求出C的坐标6,2)
,利用待定系数法求解即可求出解析式
(2)由C(6,2)分析图形可知,当0<x<6时,kx+b<,当x>6时,kx+b>
【详解】
(1)S△AOB= OA•OB=1,
∴OA=2,
∴点A的坐标是(0,﹣2),
∵B(1,0)
∴
∴
∴y=x﹣2.
当x=6时,y= ×6﹣2=2,∴C(6,2)
∴m=2×6=3.
∴y=.
(2)由C(6,2),观察图象可知:
当0<x<6时,kx+b<,当x>6时,kx+b>.
【点睛】
此题考查反比例函数与一次函数的交点问题,解题关键在于求出C的坐标
22、【发现】(3)的长度为;(2)重叠部分的面积为;【探究】:点P的坐标为;或或;【拓展】t的取值范围是或,理由见解析.
【解析】
发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;
(2)先求出PA=3,进而求出PQ,即可用面积公式得出结论;
探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;
拓展:先找出和直角三角形的两边有两个交点时的分界点,即可得出结论.
【详解】
[发现]
(3)∵P(2,0),∴OP=2.
∵OA=3,∴AP=3,∴的长度为.
故答案为;
(2)设⊙P半径为r,则有r=2﹣3=3,当t=2时,如图3,点N与点A重合,∴PA=r=3,设MP与AB相交于点Q.在Rt△ABO中,∵∠OAB=30°,∠MPN=60°.
∵∠PQA=90°,∴PQPA,∴AQ=AP×cos30°,∴S重叠部分=S△APQPQ×AQ.
即重叠部分的面积为.
[探究]
①如图2,当⊙P与直线AB相切于点C时,连接PC,则有PC⊥AB,PC=r=3.
∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;
∴点P的坐标为(3,0);
②如图3,当⊙P与直线OB相切于点D时,连接PD,则有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPD,∴OP,∴点P的坐标为(,0);
③如图2,当⊙P与直线OB相切于点E时,连接PE,则有PE⊥OB,同②可得:OP;
∴点P的坐标为(,0);
[拓展]
t的取值范围是2<t≤3,2≤t<4,理由:
如图4,当点N运动到与点A重合时,与Rt△ABO的边有一个公共点,此时t=2;
当t>2,直到⊙P运动到与AB相切时,由探究①得:OP=3,∴t3,与Rt△ABO的边有两个公共点,∴2<t≤3.
如图6,当⊙P运动到PM与OB重合时,与Rt△ABO的边有两个公共点,此时t=2;
直到⊙P运动到点N与点O重合时,与Rt△ABO的边有一个公共点,此时t=4;
∴2≤t<4,即:t的取值范围是2<t≤3,2≤t<4.
【点睛】
本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.
23、不等式组的解是x≥3;图见解析
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
∵解不等式①,得x≥3,
解不等式②,得x≥-1.5,
∴不等式组的解是x≥3,
在数轴上表示为:
.
【点睛】
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.
24、(1) A种钢笔每只15元 B种钢笔每只20元;
(2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;
(3) 定价为33元或34元,最大利润是728元.
【解析】
(1)设A种钢笔每只x元,B种钢笔每支y元,
由题意得 ,
解得: ,
答:A种钢笔每只15元,B种钢笔每支20元;
(2)设购进A种钢笔z支,
由题意得:,
∴42.4≤z<45,
∵z是整数
z=43,44,
∴90-z=47,或46;
∴共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,
方案二:购进A种钢笔44只,购进B种钢笔46只;
(3)W=(30-20+a)(68-4a)=-4a²+28a+680=-4(a-)²+729,
∵-4<0,∴W有最大值,∵a为正整数,
∴当a=3,或a=4时,W最大,
∴W最大==-4×(3-)²+729=728,30+a=33,或34;
答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.
相关试卷
这是一份2021-2022学年江苏省无锡市江阴中学中考适应性考试数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,|﹣3|的值是,下列各式中,正确的是,下列各式等内容,欢迎下载使用。
这是一份2021-2022学年江苏省江阴市第一初级中学中考联考数学试题含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,在平面直角坐标系中,已知点A,的相反数是等内容,欢迎下载使用。
这是一份2021-2022学年江苏省无锡市东湖塘中学中考联考数学试题含解析,共23页。试卷主要包含了关于x的方程=无解,则k的值为,计算的结果是等内容,欢迎下载使用。