开学活动
搜索
    上传资料 赚现金

    湖南长沙雅礼实验中学2021-2022学年中考四模数学试题含解析

    湖南长沙雅礼实验中学2021-2022学年中考四模数学试题含解析第1页
    湖南长沙雅礼实验中学2021-2022学年中考四模数学试题含解析第2页
    湖南长沙雅礼实验中学2021-2022学年中考四模数学试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南长沙雅礼实验中学2021-2022学年中考四模数学试题含解析

    展开

    这是一份湖南长沙雅礼实验中学2021-2022学年中考四模数学试题含解析,共23页。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为(  )

    A.3 B.4﹣ C.4 D.6﹣2
    2.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为(  )
    A.5 B.﹣1 C.2 D.﹣5
    3.估计-1的值在( )
    A.0到1之间 B.1到2之间 C.2到3之间 D.3至4之间
    4.如图,在△ABC中,AC=BC,点D在BC的延长线上,AE∥BD,点ED在AC同侧,若∠CAE=118°,则∠B的大小为(  )

    A.31° B.32° C.59° D.62°
    5.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )

    A.(―1,2)
    B.(―9,18)
    C.(―9,18)或(9,―18)
    D.(―1,2)或(1,―2)
    6.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是(  )

    A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD
    7.不等式的解集在数轴上表示正确的是( )
    A. B. C. D.
    8.一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是(  )
    A.4 B.5 C.10 D.11
    9.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是(  )
    A.3,-1 B.1,-3 C.-3,1 D.-1,3
    10.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为(  )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.

    12.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第_____象限.
    13.写出一个大于3且小于4的无理数:___________.
    14.如图,这是一幅长为3m,宽为1m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m1.

    15.已知(x-ay)(x+ay),那么a=_______
    16.如果a,b分别是2016的两个平方根,那么a+b﹣ab=___.
    三、解答题(共8题,共72分)
    17.(8分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
    (1)B点坐标为  ,并求抛物线的解析式;
    (2)求线段PC长的最大值;
    (3)若△PAC为直角三角形,直接写出此时点P的坐标.

    18.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.
    (1)求证:AC平分∠DAB;
    (2)若BE=3,CE=3,求图中阴影部分的面积.

    19.(8分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.

    20.(8分)如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0).
    (1)求抛物线的解析式及其顶点D的坐标;
    (2)如果点P(p,0)是x轴上的一个动点,则当|PC﹣PD|取得最大值时,求p的值;
    (3)能否在抛物线第一象限的图象上找到一点Q,使△QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由.

    21.(8分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
    (1)求证:BC是⊙O的切线;
    (2)已知AD=3,CD=2,求BC的长.

    22.(10分)如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.
    (1)求抛物线的解析式;
    (2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.

    23.(12分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下

    如图(1)∠DAB=90°,求证:a2+b2=c2
    证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-a
    S四边形ADCB=
    S四边形ADCB=
    ∴化简得:a2+b2=c2
    请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2
    24.如图,在平面直角坐标系中,二次函数的图象与轴交于,两点,与轴交于点,点的坐标为.

    (1)求二次函数的解析式;
    (2)若点是抛物线在第四象限上的一个动点,当四边形的面积最大时,求点的坐标,并求出四边形的最大面积;
    (3)若为抛物线对称轴上一动点,直接写出使为直角三角形的点的坐标.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.
    详解:如图,当点E旋转至y轴上时DE最小;

    ∵△ABC是等边三角形,D为BC的中点,
    ∴AD⊥BC
    ∵AB=BC=2
    ∴AD=AB•sin∠B=,
    ∵正六边形的边长等于其半径,正六边形的边长为2,
    ∴OE=OE′=2
    ∵点A的坐标为(0,6)
    ∴OA=6
    ∴DE′=OA-AD-OE′=4-
    故选B.
    点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.
    2、B
    【解析】
    根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.
    【详解】
    ∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,
    ∴-2+m=−,
    解得,m=-1,
    故选B.
    3、B
    【解析】
    试题分析:∵2<<3,
    ∴1<-1<2,
    即-1在1到2之间,
    故选B.
    考点:估算无理数的大小.
    4、A
    【解析】
    根据等腰三角形的性质得出∠B=∠CAB,再利用平行线的性质解答即可.
    【详解】
    ∵在△ABC中,AC=BC,
    ∴∠B=∠CAB,
    ∵AE∥BD,∠CAE=118°,
    ∴∠B+∠CAB+∠CAE=180°,
    即2∠B=180°−118°,
    解得:∠B=31°,
    故选A.
    【点睛】
    此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出∠B=∠CAB.
    5、D
    【解析】
    试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且= .∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).
    方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).
    ∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).
    故答案选D.

    考点:位似变换.
    6、B
    【解析】
    由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.
    【详解】
    四边形ABCD是平行四边形,
    ∴AD//BC,AD=BC,
    A、∵AE=CF,
    ∴DE=BF,
    ∴四边形BFDE是平行四边形,
    ∴BE//DF,故本选项能判定BE//DF;
    B、∵BE=DF,
    四边形BFDE是等腰梯形,
    本选项不一定能判定BE//DF;
    C、∵AD//BC,
    ∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
    ∵∠EBF=∠FDE,
    ∴∠BED=∠BFD,
    四边形BFDE是平行四边形,
    ∴BE//DF,
    故本选项能判定BE//DF;
    D、∵AD//BC,
    ∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
    ∵∠BED=∠BFD,
    ∴∠EBF=∠FDE,
    ∴四边形BFDE是平行四边形,
    ∴BE//DF,故本选项能判定BE//DF.
    故选B.
    【点睛】
    本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.
    7、B
    【解析】
    根据不等式的性质:先移项,再合并即可解得不等式的解集,最后将解集表示在数轴上即可.
    【详解】
    解:解:移项得,
    x≤3-2,
    合并得,
    x≤1;
    在数轴上表示应包括1和它左边的部分,如下:

    故选:B.
    【点睛】
    本题考查了一元一次不等式的解集的求法及在数轴上表示不等式的解集,注意数轴上包括的端点实心点表示.
    8、B
    【解析】
    试题分析:(4+x+3+30+33)÷3=7,
    解得:x=3,
    根据众数的定义可得这组数据的众数是3.
    故选B.
    考点:3.众数;3.算术平均数.
    9、A
    【解析】
    根据题意可得方程组,再解方程组即可.
    【详解】
    由题意得:,
    解得:,
    故选A.
    10、C
    【解析】
    连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.
    【详解】
    解:连接OD,
    在Rt△OCD中,OC=OD=2,
    ∴∠ODC=30°,CD=
    ∴∠COD=60°,
    ∴阴影部分的面积= ,
    故选:C.

    【点睛】
    本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2
    【解析】
    凸六边形ABCDEF,并不是一规则的六边形,但六个角都是110°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.
    【详解】
    解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.

    ∵六边形ABCDEF的六个角都是110°,
    ∴六边形ABCDEF的每一个外角的度数都是60°.
    ∴△AHF、△BGC、△DPE、△GHP都是等边三角形.
    ∴GC=BC=3,DP=DE=1.
    ∴GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.
    ∴六边形的周长为1+3+3+1+4+1=2.
    故答案为2.
    【点睛】
    本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.
    12、一
    【解析】
    ∵一元二次方程x2-2x-m=0无实数根,
    ∴△=4+4m<0,解得m<-1,
    ∴m+1<0,m-1<0,
    ∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.
    故答案是:一.
    13、如等,答案不唯一.
    【解析】
    本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.
    14、1.4
    【解析】
    由概率估计图案在整副画中所占比例,再求出图案的面积.
    【详解】
    估计宣传画上世界杯图案的面积约为3×1×0.4=1.4m1.
    故答案为1.4
    【点睛】
    本题考核知识点:几何概率. 解题关键点:由几何概率估计图案在整副画中所占比例.
    15、±4
    【解析】
    根据平方差公式展开左边即可得出答案.
    【详解】
    ∵(x-ay)(x+ay)=
    又(x-ay)(x+ay)

    解得:a=±4
    故答案为:±4.
    【点睛】
    本题考查的平方差公式:.
    16、1
    【解析】
    先由平方根的应用得出a,b的值,进而得出a+b=0,代入即可得出结论.
    【详解】
    ∵a,b分别是1的两个平方根,

    ∵a,b分别是1的两个平方根,
    ∴a+b=0,
    ∴ab=a×(﹣a)=﹣a2=﹣1,
    ∴a+b﹣ab=0﹣(﹣1)=1,
    故答案为:1.
    【点睛】
    此题主要考查了平方根的性质和意义,解本题的关键是熟练掌握平方根的性质.

    三、解答题(共8题,共72分)
    17、(1)(4,6);y=1x1﹣8x+6(1);(3)点P的坐标为(3,5)或().
    【解析】
    (1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.
    (1)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.
    (3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论.
    【详解】
    解:(1)∵B(4,m)在直线y=x+1上,
    ∴m=4+1=6,
    ∴B(4,6),
    故答案为(4,6);
    ∵A(,),B(4,6)在抛物线y=ax1+bx+6上,
    ∴,解得,
    ∴抛物线的解析式为y=1x1﹣8x+6;
    (1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n1﹣8n+6),
    ∴PC=(n+1)﹣(1n1﹣8n+6),
    =﹣1n1+9n﹣4,
    =﹣1(n﹣)1+,
    ∵PC>0,
    ∴当n=时,线段PC最大且为.
    (3)∵△PAC为直角三角形,
    i)若点P为直角顶点,则∠APC=90°.
    由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;
    ii)若点A为直角顶点,则∠PAC=90°.
    如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.
    过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,
    ∴MN=AN=,
    ∴OM=ON+MN=+=3,
    ∴M(3,0).
    设直线AM的解析式为:y=kx+b,
    则:,解得,
    ∴直线AM的解析式为:y=﹣x+3 ①
    又抛物线的解析式为:y=1x1﹣8x+6 ②
    联立①②式,
    解得:或(与点A重合,舍去),
    ∴C(3,0),即点C、M点重合.
    当x=3时,y=x+1=5,
    ∴P1(3,5);

    iii)若点C为直角顶点,则∠ACP=90°.
    ∵y=1x1﹣8x+6=1(x﹣1)1﹣1,
    ∴抛物线的对称轴为直线x=1.
    如图1,作点A(,)关于对称轴x=1的对称点C,
    则点C在抛物线上,且C(,).
    当x=时,y=x+1=.
    ∴P1(,).
    ∵点P1(3,5)、P1(,)均在线段AB上,
    ∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).
    【点睛】
    本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.
    18、(1)证明见解析;(2)
    【解析】
    (1)连接OC,如图,利用切线的性质得CO⊥CD,则AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,从而得到∠DAC=∠CAO;
    (2)设⊙O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出∠COE=60°,然后根据扇形的面积公式,利用S阴影=S△COE﹣S扇形COB进行计算即可.
    【详解】
    解:(1)连接OC,如图,
    ∵CD与⊙O相切于点E,
    ∴CO⊥CD,
    ∵AD⊥CD,
    ∴AD∥CO,
    ∴∠DAC=∠ACO,
    ∵OA=OC,
    ∴∠ACO=∠CAO,
    ∴∠DAC=∠CAO,
    即AC平分∠DAB;
    (2)设⊙O半径为r,
    在Rt△OEC中,∵OE2+EC2=OC2,
    ∴r2+27=(r+3)2,解得r=3,
    ∴OC=3,OE=6,
    ∴cos∠COE=,
    ∴∠COE=60°,
    ∴S阴影=S△COE﹣S扇形COB=•3•3﹣.

    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.
    19、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.
    【解析】
    【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;
    (1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.
    【详解】(1)∵点A在直线y1=1x﹣1上,
    ∴设A(x,1x﹣1),
    过A作AC⊥OB于C,
    ∵AB⊥OA,且OA=AB,
    ∴OC=BC,
    ∴AC=OB=OC,
    ∴x=1x﹣1,
    x=1,
    ∴A(1,1),
    ∴k=1×1=4,
    ∴;
    (1)∵,解得:,,
    ∴C(﹣1,﹣4),
    由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.

    【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.
    20、 (1) y=﹣(x﹣1)2+9 ,D(1,9); (2)p=﹣1;(3)存在点Q(2,1)使△QBC的面积最大.
    【解析】
    分析:
    (1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;
    (2)由题意可知点P在直线CD上时,|PC﹣PD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;
    (3)由(1)中所得抛物线的解析式设点Q的坐标为(m,﹣m2+2m+1)(0<m<4),然后用含m的代数式表达出△BCQ的面积,并将所得表达式配方化为顶点式即可求得对应点Q的坐标.
    详解:
    (1)∵抛物线y=ax2+2x+1经过点B(4,0),
    ∴16a+1+1=0,
    ∴a=﹣1,
    ∴抛物线的解析式为y=﹣x2+2x+1=﹣(x﹣1)2+9,
    ∴D(1,9);
    (2)∵当x=0时,y=1,
    ∴C(0,1).
    设直线CD的解析式为y=kx+b.
    将点C、D的坐标代入得:,解得:k=1,b=1,
    ∴直线CD的解析式为y=x+1.
    当y=0时,x+1=0,解得:x=﹣1,
    ∴直线CD与x轴的交点坐标为(﹣1,0).
    ∵当P在直线CD上时,|PC﹣PD|取得最大值,
    ∴p=﹣1;
    (3)存在,
    理由:如图,由(2)知,C(0,1),
    ∵B(4,0),
    ∴直线BC的解析式为y=﹣2x+1,
    过点Q作QE∥y轴交BC于E,
    设Q(m,﹣m2+2m+1)(0<m<4),则点E的坐标为:(m,﹣2m+1),
    ∴EQ=﹣m2+2m+1﹣(﹣2m+1)=﹣m2+4m,
    ∴S△QBC=(﹣m2+4m)×4=﹣2(m﹣2)2+1,
    ∴m=2时,S△QBC最大,此时点Q的坐标为:(2,1).

    点睛:(1)解第2小题时,知道当点P在直线CD上时,|PC﹣PD|的值最大,是找到解题思路的关键;(2)解第3小题的关键是设出点Q的坐标(m,﹣m2+2m+1)(0<m<4),并结合点B、C的坐标把△BCQ的面积用含m的代数式表达出来.
    21、 (1)证明见解析
    (2)BC=
    【解析】
    (1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;
    (2)可证明△ABC∽△BDC,则,即可得出BC=.
    【详解】
    (1)∵AB是⊙O的切直径,
    ∴∠ADB=90°,
    又∵∠BAD=∠BED,∠BED=∠DBC,
    ∴∠BAD=∠DBC,
    ∴∠BAD+∠ABD=∠DBC+∠ABD=90°,
    ∴∠ABC=90°,
    ∴BC是⊙O的切线;
    (2)解:∵∠BAD=∠DBC,∠C=∠C,
    ∴△ABC∽△BDC,
    ∴,即BC2=AC•CD=(AD+CD)•CD=10,
    ∴BC=.
    考点:1.切线的判定;2.相似三角形的判定和性质.
    22、(1);(2)(0,)或(0,4).
    【解析】
    试题分析:(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;
    (2)本题要分两种情况进行讨论:①PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;
    ②PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标.
    试题解析:(1)∵抛物线经过点A(1,0),∴,∴;
    (2)∵抛物线的解析式为,∴令,则,∴B点坐标(0,﹣4),AB=,
    ①当PB=AB时,PB=AB=,∴OP=PB﹣OB=.∴P(0,),
    ②当PA=AB时,P、B关于x轴对称,∴P(0,4),因此P点的坐标为(0,)或(0,4).
    考点:二次函数综合题.
    23、见解析.
    【解析】
    首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.
    【详解】
    证明:连结BD,过点B作DE边上的高BF,则BF=b-a,

    ∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,
    又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),
    ∴ab+b1+ab=ab+c1+a(b-a),
    ∴a1+b1=c1.
    【点睛】
    此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.
    24、(1);(2)P点坐标为, ;(3) 或或或.
    【解析】
    (1)根据待定系数法把A、C两点坐标代入可求得二次函数的解析式;
    (2)由抛物线解析式可求得B点坐标,由B、C坐标可求得直线BC解析式,可设出P点坐标,用P点坐标表示出四边形ABPC的面积,根据二次函数的性质可求得其面积的最大值及P点坐标;
    (3)首先设出Q点的坐标,则可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.
    【详解】
    解:(1)∵A(-1,0),在上,
    ,解得,
    ∴二次函数的解析式为;
    (2)在中,令可得,解得或,
    ,且,
    ∴经过、两点的直线为,
    设点的坐标为,如图,过点作轴,垂足为,与直线交于点,则,


    ∴当时,四边形的面积最大,此时P点坐标为,
    ∴四边形的最大面积为;
    (3),
    ∴对称轴为,
    ∴可设点坐标为,
    ,,
    ,,,
    为直角三角形,
    ∴有、和三种情况,
    ①当时,则有,即,解得或,此时点坐标为或;
    ②当时,则有,即,解得,此时点坐标为;
    ③当时,则有,即,解得,此时点坐标为;
    综上可知点的坐标为或或或.
    【点睛】
    本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.

    相关试卷

    2023-2024学年湖南长沙雅礼实验中学数学九上期末调研试题含答案:

    这是一份2023-2024学年湖南长沙雅礼实验中学数学九上期末调研试题含答案,共8页。

    2023年湖南省长沙市雨花区雅礼实验中学中考数学二模试卷(含解析):

    这是一份2023年湖南省长沙市雨花区雅礼实验中学中考数学二模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年湖南长沙雅礼实验中学中考数学对点突破模拟试卷含解析:

    这是一份2022年湖南长沙雅礼实验中学中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了不等式组的解集是,下列说法中不正确的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map