


湖南省洪江市2021-2022学年中考数学适应性模拟试题含解析
展开
这是一份湖南省洪江市2021-2022学年中考数学适应性模拟试题含解析,共22页。试卷主要包含了答题时请按要求用笔,|﹣3|的值是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是( )
A.40° B.50° C.60° D.140°
2.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为( )
A.﹣2 B.﹣1 C.1 D.2
3.下列说法正确的是( )
A.掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件
B.明天下雪的概率为,表示明天有半天都在下雪
C.甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
D.了解一批充电宝的使用寿命,适合用普查的方式
4.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是
A. B. C. D.
5.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是( )
A. B. C. D.
6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=( )
A. B. C.12 D.24
7.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是( )
A.27分钟 B.20分钟 C.13分钟 D.7分钟
8.如图,直立于地面上的电线杆 AB,在阳光下落在水平地面和坡面上的影子分别是
BC、CD,测得 BC=6 米,CD=4 米,∠BCD=150°,在 D 处测得电线杆顶端 A 的仰 角为 30°,则电线杆 AB 的高度为( )
A. B. C. D.
9.如图是二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②1a﹣b=0;③4a+1b+c<0;④若(﹣5,y1),(,y1)是抛物线上两点,则
y1>y1.其中说法正确的是( )
A.①② B.②③ C.①②④ D.②③④
10.|﹣3|的值是( )
A.3 B. C.﹣3 D.﹣
二、填空题(共7小题,每小题3分,满分21分)
11.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.
12.太极揉推器是一种常见的健身器材.基本结构包括支架和转盘,数学兴趣小组的同学对某太极揉推器的部分数据进行了测量:如图,立柱AB的长为125cm,支架CD、CE的长分别为60cm、40cm,支点C到立柱顶点B的距离为25cm.支架CD,CE与立柱AB的夹角∠BCD=∠BCE=45°,转盘的直径FG=MN=60cm,D,E分别是FG,MN的中点,且CD⊥FG,CE⊥MN,则两个转盘的最低点F,N距离地面的高度差为_____cm.(结果保留根号)
13.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_____.
14.如图,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_____(结果保留π).
15.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.
16.如图,在每个小正方形的边长为1的网格中,A,B为格点
(Ⅰ)AB的长等于__
(Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且△ABC的面积等于,并简要说明点C的位置是如何找到的__________________
17.方程的解是_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.
(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;
(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N均在小正方形的顶点上;
(3)连接ME,并直接写出EM的长.
19.(5分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
(1)求证:四边形BFCE是平行四边形;
(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.
20.(8分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
21.(10分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).按下列要求作图:
①将△ABC向左平移4个单位,得到△A1B1C1;
②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.求点C1在旋转过程中所经过的路径长.
22.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组
频数
频率
第一组(0≤x<15)
3
0.15
第二组(15≤x<30)
6
a
第三组(30≤x<45)
7
0.35
第四组(45≤x<60)
b
0.20
(1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?
23.(12分)如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD.
求证:AD•CE=DE•DF;
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.
①∠CDB=∠CEB;
②AD∥EC;
③∠DEC=∠ADF,且∠CDE=90°.
24.(14分)在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.
(Ⅰ)如图①,求OD的长及的值;
(Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.
①在旋转过程中,当∠BAG′=90°时,求α的大小;
②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.
解:∵DB⊥BC,∠2=50°,
∴∠3=90°﹣∠2=90°﹣50°=40°,
∵AB∥CD,
∴∠1=∠3=40°.
故选A.
2、C
【解析】
先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.
【详解】
a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.
故选C.
【点睛】
本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.
3、C
【解析】
根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可.
【详解】
A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;
B. “明天下雪的概率为”,表示明天有可能下雪,错误;
C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,正确;
D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误;
故选:C
【点睛】
考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大.
4、D
【解析】
【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.
【详解】由二次函数的图象可知,
,,
当时,,
的图象经过二、三、四象限,
观察可得D选项的图象符合,
故选D.
【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.
5、A
【解析】
分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.
详解:A、上面小下面大,侧面是曲面,故本选项正确;
B、上面大下面小,侧面是曲面,故本选项错误;
C、是一个圆台,故本选项错误;
D、下面小上面大侧面是曲面,故本选项错误;
故选A.
点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.
6、A
【解析】
解:如图,设对角线相交于点O,
∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,
由勾股定理的,AB===5,
∵DH⊥AB,∴S菱形ABCD=AB•DH=AC•BD,
即5DH=×8×6,解得DH=.
故选A.
【点睛】
本题考查菱形的性质.
7、C
【解析】
先利用待定系数法求函数解析式,然后将y=35代入,从而求解.
【详解】
解:设反比例函数关系式为:,将(7,100)代入,得k=700,
∴,
将y=35代入,
解得;
∴水温从100℃降到35℃所用的时间是:20-7=13,
故选C.
【点睛】
本题考查反比例函数的应用,利用数形结合思想解题是关键.
8、B
【解析】
延长AD交BC的延长线于E,作DF⊥BE于F,
∵∠BCD=150°,
∴∠DCF=30°,又CD=4,
∴DF=2,CF= =2,
由题意得∠E=30°,
∴EF= ,
∴BE=BC+CF+EF=6+4,
∴AB=BE×tanE=(6+4)×=(2+4)米,
即电线杆的高度为(2+4)米.
点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
9、C
【解析】
∵二次函数的图象的开口向上,∴a>0。
∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0。
∵二次函数图象的对称轴是直线x=﹣1,∴。∴b=1a>0。
∴abc<0,因此说法①正确。
∵1a﹣b=1a﹣1a=0,因此说法②正确。
∵二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),
∴图象与x轴的另一个交点的坐标是(1,0)。
∴把x=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此说法③错误。
∵二次函数图象的对称轴为x=﹣1,
∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),
∵当x>﹣1时,y随x的增大而增大,而<3
∴y1<y1,因此说法④正确。
综上所述,说法正确的是①②④。故选C。
10、A
【解析】
分析:根据绝对值的定义回答即可.
详解:负数的绝对值等于它的相反数,
故选A.
点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.
二、填空题(共7小题,每小题3分,满分21分)
11、甲.
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,方差越大,数据不稳定,则为新手.
【详解】
∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,
∴甲的方差大于乙的方差.
故答案为:甲.
【点睛】
本题考查的知识点是方差,条形统计图,解题的关键是熟练的掌握方差,条形统计图.
12、10
【解析】
作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解决问题.
【详解】
解:作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.
由题意△QDF,△QCH都是等腰直角三角形,四边形FQHJ是矩形,
∴DF=DQ=30cm,CQ=CD−DQ=60−30=30cm,
∴FJ=QH=15cm,
∵AC=AB−BC=125−25=100cm,
∴PF=(15+100)cm,
同法可求:NT=(100+5),
∴两个转盘的最低点F,N距离地面的高度差为=(15+100)-(100+5)=10
故答案为: 10
【点睛】
本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
13、2
【解析】
过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,
【详解】
解:连接OB,OA′,AA′,
∵AA′关于直线MN对称,
∴
∵∠AMN=40°,
∴∠A′ON=80°,∠BON=40°,
∴∠A′OB=120°,
过O作OQ⊥A′B于Q,
在Rt△A′OQ中,OA′=2,
∴A′B=2A′Q=
即PA+PB的最小值.
【点睛】
本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键.
14、4﹣π
【解析】
由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角边AC与BC的长,继而求得△ABC的面积,又由扇形的面积公式求得扇形EAD和扇形FBD的面积,继而求得答案.
【详解】
解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,
∴AC=BC=AB•sin45°=AB=2,
∴S△ABC=AC•BC=4,
∵点D为AB的中点,
∴AD=BD=AB=2,
∴S扇形EAD=S扇形FBD=×π×22=π,
∴S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.
故答案为:4﹣π.
【点睛】
此题考查了等腰直角三角形的性质以及扇形的面积.注意S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD.
15、
【解析】
如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题.
【详解】
解:如图,设AH=x,GB=y,
∵EH∥BC,
,
∵FG∥AC,
,
由①②可得x=,y=2,
∴AC=,BC=7,
∴S△ABC=,
故答案为.
【点睛】
本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.
16、 取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
【解析】
(Ⅰ)利用勾股定理计算即可;
(Ⅱ)取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
【详解】
解:(Ⅰ)AB= =,
故答案为.
(Ⅱ)如图取格点P、N(使得S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
故答案为:取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
【点睛】
本题考查作图﹣应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.
17、1
【解析】
,
,
x=1,
代入最简公分母,x=1是方程的解.
三、解答题(共7小题,满分69分)
18、(1)画图见解析;(2)画图见解析;(3).
【解析】
(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;
(2)根据矩形的性质画出符合题意的图形;
(3)根据题意利用勾股定理得出结论.
【详解】
(1)如图所示;
(2)如图所示;
(3)如图所示,在直角三角形中,根据勾股定理得EM=.
【点睛】
本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理.
19、(1)证明见试题解析;(2)1.
【解析】
试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;
(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.
试题解析:(1)∵AB=DC,∴AC=DB,
在△AEC和△DFB中,∴△AEC≌△DFB(SAS),
∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;
(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,
∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,
∴当BE=1时,四边形BFCE是菱形,
故答案为1.
【考点】
平行四边形的判定;菱形的判定.
20、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;
(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.
【解析】
详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,
解得,
答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得
,
解得:6≤a≤8,
因为a是整数,
所以a=6,7,8;
则(10-a)=4,3,2;
三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.
(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
【点睛】
此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
21、(1)①见解析;②见解析;(1)1π.
【解析】
(1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;
②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;
(1)根据弧长公式计算.
【详解】
(1)①如图,△A1B1C1为所作;
②如图,△A1B1C1为所作;
(1)点C1在旋转过程中所经过的路径长=
【点睛】
本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.
22、0.3 4
【解析】
(1)由统计图易得a与b的值,继而将统计图补充完整;
(2)利用用样本估计总体的知识求解即可求得答案;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
【详解】
(1)a=1﹣0.15﹣0.35﹣0.20=0.3;
∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);
故答案为0.3,4;
补全统计图得:
(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
(3)画树状图得:
∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:=.
【点睛】
本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
23、 (1)见解析;(2)见解析.
【解析】
连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是⊙O的切线,若证AD•CE=DE•DF,只要征得△ADF∽△DEC即可.在第一问中只能证得∠EDC=∠DAF=90°,所以在第二问中只要证得∠DEC=∠ADF即可解答此题.
【详解】
(1)连接AF,
∵DF是⊙O的直径,
∴∠DAF=90°,
∴∠F+∠ADF=90°,
∵∠F=∠ABD,∠ADG=∠ABD,
∴∠F=∠ADG,
∴∠ADF+∠ADG=90°
∴直线CD是⊙O的切线
∴∠EDC=90°,
∴∠EDC=∠DAF=90°;
(2)选取①完成证明
∵直线CD是⊙O的切线,
∴∠CDB=∠A.
∵∠CDB=∠CEB,
∴∠A=∠CEB.
∴AD∥EC.
∴∠DEC=∠ADF.
∵∠EDC=∠DAF=90°,
∴△ADF∽△DEC.
∴AD:DE=DF:EC.
∴AD•CE=DE•DF.
【点睛】
此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识.注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出.还要注意构造直径所对的圆周角是圆中的常见辅助线.
24、(Ⅰ)(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)
【解析】
(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,
BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.
【详解】
(Ⅰ)如图1中,
∵A(0,1),
∴OA=1,
∵四边形OADC是正方形,
∴∠OAD=90°,AD=OA=1,
∴OD=AC==,
∴AB=BC=BD=BO=,
∵BD=DG,
∴BG=,
∴==.
(Ⅱ)①如图2中,
∵∠BAG′=90°,BG′=2AB,
∴sin∠AG′B==,
∴∠AG′B=30°,
∴∠ABG′=60°,
∴∠DBG′=30°,
∴旋转角α=30°,
根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,
综上所述,旋转角α=30°或150°时,∠BAG′=90°.
②如图3中,连接OF,
∵四边形BE′F′G′是正方形的边长为
∴BF′=2,
∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,
此时α=315°,F′(+,﹣)
【点睛】
本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.
相关试卷
这是一份湖南省岳阳市名校2021-2022学年中考数学适应性模拟试题含解析,共20页。试卷主要包含了的绝对值是等内容,欢迎下载使用。
这是一份湖南省长沙五中学2021-2022学年中考数学适应性模拟试题含解析,共17页。试卷主要包含了如图1是一座立交桥的示意图,若关于x的一元二次方程等内容,欢迎下载使用。
这是一份湖南省长沙市部分校2021-2022学年中考数学适应性模拟试题含解析,共21页。试卷主要包含了下列实数中是无理数的是,化简等内容,欢迎下载使用。
