|试卷下载
搜索
    上传资料 赚现金
    北京市第35中学2022年中考数学全真模拟试卷含解析
    立即下载
    加入资料篮
    北京市第35中学2022年中考数学全真模拟试卷含解析01
    北京市第35中学2022年中考数学全真模拟试卷含解析02
    北京市第35中学2022年中考数学全真模拟试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市第35中学2022年中考数学全真模拟试卷含解析

    展开
    这是一份北京市第35中学2022年中考数学全真模拟试卷含解析,共23页。试卷主要包含了某排球队名场上队员的身高,下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180°,所得抛物线的解析式是( ).
    A. B.
    C. D.
    2.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为(  )
    A.55×105 B.5.5×104 C.0.55×105 D.5.5×105
    3.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则的正弦值是

    A. B. C. D.
    4.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为(  )

    A.800sinα米 B.800tanα米 C.米 D.米
    5.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )
    A.平均数变小,方差变小 B.平均数变小,方差变大
    C.平均数变大,方差变小 D.平均数变大,方差变大
    6.湿地旅游爱好者小明了解到鄂东南市水资源总量为42.4亿立方米,其中42.4亿用科学记数法可表示为(  )
    A.42.4×109 B.4.24×108 C.4.24×109 D.0.424×108
    7.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的(  )
    A. B.
    C. D.
    8.下列运算正确的是(  )
    A.5ab﹣ab=4 B.a6÷a2=a4
    C. D.(a2b)3=a5b3
    9.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=(  )

    A. B. C. D.
    10.如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(﹣3,1)、C(0,﹣1),若将△ABC绕点C沿顺时针方向旋转90°后得到△A1B1C,则点B对应点B1的坐标是(  )

    A.(3,1) B.(2,2) C.(1,3) D.(3,0)
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.的相反数是______.
    12.分解因式:2x2﹣8xy+8y2= .
    13.如图,直线交于点,,与轴负半轴,轴正半轴分别交于点,,,的延长线相交于点,则的值是_________.

    14.如图,已知,第一象限内的点A在反比例函数y=的图象上,第四象限内的点B在反比例函数y=的图象上.且OA⊥OB,∠OAB=60°,则k的值为_________.

    15.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于_____________.

    16.若一次函数y=﹣2(x+1)+4的值是正数,则x的取值范围是_______.
    三、解答题(共8题,共72分)
    17.(8分)已知,关于x的方程x2+2x-k=0有两个不相等的实数根.
    (1)求k的取值范围;
    (2)若x1,x2是这个方程的两个实数根,求的值;
    (3)根据(2)的结果你能得出什么结论?
    18.(8分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.
    态度
    非常喜欢
    喜欢
    一般
    不知道
    频数
    90
    b
    30
    10
    频率
    a
    0.35
    0.20

    请你根据统计图、表,提供的信息解答下列问题:
    (1)该校这次随即抽取了 名学生参加问卷调查:
    (2)确定统计表中a、b的值:a= ,b= ;
    (3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.
    19.(8分)已知:如图,在△OAB中,OA=OB,⊙O经过AB的中点C,与OB交于点D,且与BO的延长线交于点E,连接EC,CD.
    (1)试判断AB与⊙O的位置关系,并加以证明;
    (2)若tanE=,⊙O的半径为3,求OA的长.

    20.(8分)已知:关于x的方程x2﹣(2m+1)x+2m=0
    (1)求证:方程一定有两个实数根;
    (2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.
    21.(8分)已知抛物线的开口向上顶点为P
    (1)若P点坐标为(4,一1),求抛物线的解析式;
    (2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)
    (3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值
    22.(10分)新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.
    (1)求w与x之间的函数关系式;
    (2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
    (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?
    23.(12分)已知点O是正方形ABCD对角线BD的中点.
    (1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.
    ①∠AEM=∠FEM; ②点F是AB的中点;
    (2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;
    (3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).
    24.一次函数y=x的图象如图所示,它与二次函数y=ax2-4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.
    (1)求点C的坐标;
    (2)设二次函数图象的顶点为D.
    ①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;
    ②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可.
    【详解】
    解:∵y=x2+2x+3=(x+1)2+2,
    ∴原抛物线的顶点坐标为(-1,2),
    令x=0,则y=3,
    ∴抛物线与y轴的交点坐标为(0,3),
    ∵抛物线绕与y轴的交点旋转180°,
    ∴所得抛物线的顶点坐标为(1,4),
    ∴所得抛物线的解析式为:y=-x2+2x+3[或y=-(x-1)2+4].
    故选:B.
    【点睛】
    本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便.
    2、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将度55000用科学记数法表示为5.5×1.
    故选B.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3、A
    【解析】
    由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可.
    【详解】
    解:由题意得,,,

    由勾股定理得,,

    故选:A.
    【点睛】
    本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
    4、D
    【解析】
    【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题.
    【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,
    ∴tanα=,
    ∴AB=,
    故选D.
    【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.
    5、A
    【解析】
    分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.
    详解:换人前6名队员身高的平均数为==188,
    方差为S2==;
    换人后6名队员身高的平均数为==187,
    方差为S2==
    ∵188>187,>,
    ∴平均数变小,方差变小,
    故选:A.
    点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    6、C
    【解析】
    科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
    【详解】
    42.4亿=4240000000,
    用科学记数法表示为:4.24×1.
    故选C.
    【点睛】
    考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
    7、D
    【解析】
    当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.
    【详解】
    解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,
    ∴直线经过一、二、四象限,双曲线在二、四象限.
    故选D.
    【点睛】
    本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.
    8、B
    【解析】
    由整数指数幂和分式的运算的法则计算可得答案.
    【详解】
    A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;
    B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6÷a2=a4,故B项正确;
    C项,根据分式的加法法则可得:,故C项错误;
    D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;
    故本题正确答案为B.
    【点睛】
    幂的运算法则:
    (1) 同底数幂的乘法: (m、n都是正整数)
    (2)幂的乘方:(m、n都是正整数)
    (3)积的乘方: (n是正整数)
    (4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)
    (5)零次幂:(a≠0)
    (6) 负整数次幂: (a≠0, p是正整数).
    9、C
    【解析】
    由正方形的性质知DG=CG-CD=2、AD∥GF,据此证△ADM∽△FGM得 , 求出GM的长,再利用勾股定理求解可得答案.
    【详解】
    解:∵四边形ABCD和四边形CEFG是正方形,
    ∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,
    ∴DG=CG-CD=2,AD∥GF,
    则△ADM∽△FGM,
    ∴,即 ,
    解得:GM= ,
    ∴FM= = = ,
    故选:C.
    【点睛】
    本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点.
    10、B
    【解析】
    作出点A、B绕点C按顺时针方向旋转90°后得到的对应点,再顺次连接可得△A1B1C,即可得到点B对应点B1的坐标.
    【详解】
    解:如图所示,△A1B1C即为旋转后的三角形,点B对应点B1的坐标为(2,2).

    故选:B.
    【点睛】
    此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键. 图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、﹣.
    【解析】
    根据只有符号不同的两个数叫做互为相反数解答.
    【详解】
    的相反数是.
    故答案为.
    【点睛】
    本题考查的知识点是相反数,解题关键是熟记相反数的概念.
    12、1(x﹣1y)1
    【解析】
    试题分析:1x1﹣8xy+8y1
    =1(x1﹣4xy+4y1)
    =1(x﹣1y)1.
    故答案为:1(x﹣1y)1.
    考点:提公因式法与公式法的综合运用
    13、
    【解析】
    连接,根据可得,并且根据圆的半径相等可得△OAD、△OBE都是等腰三角形,由三角形的内角和,可得∠C=45°,则有是等腰直角三角形,可得
    即可求求解.
    【详解】
    解:如图示,连接,

    ∵,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,
    ∵是直径,
    ∴,
    ∴是等腰直角三角形,
    ∴.
    【点睛】
    本题考查圆的性质和直角三角形的性质,能够根据圆性质得出是等腰直角三角形是解题的关键.
    14、-6
    【解析】
    如图,作AC⊥x轴,BD⊥x轴,
    ∵OA⊥OB,
    ∴∠AOB=90°,
    ∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,
    ∴∠OAC=∠BOD,
    ∴△ACO∽△ODB,
    ∴,
    ∵∠OAB=60°,
    ∴,
    设A(x,),
    ∴BD=OC=x,OD=AC=,
    ∴B(x,-),
    把点B代入y=得,-=,解得k=-6,
    故答案为-6.

    15、﹣24
    【解析】
    分析:
    如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2S△COD=40=OA·CF=20x2,从而可得x=,由此可得点C的坐标为,这样由点C在反比例函数的图象上即可得到k=-24.
    详解:
    如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,
    ∵四边形ABCO是菱形,
    ∴AB∥CO,AO∥BC,
    ∵DE∥AO,
    ∴四边形AOED和四边形DECB都是平行四边形,
    ∴S△AOD=S△DOE,S△BCD=S△CDE,
    ∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,
    ∵tan∠AOC=,CF=4x,
    ∴OF=3x,
    ∴在Rt△COF中,由勾股定理可得OC=5x,
    ∴OA==OC=5x,
    ∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,
    ∴OF=,CF=,
    ∴点C的坐标为,
    ∵点C在反比例函数的图象上,
    ∴k=.
    故答案为:-24.

    点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x,结合已知条件把OF和OA用含x的式子表达出来;(2)由四边形AOCB是菱形,点D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.
    16、x<1
    【解析】
    根据一次函数的性质得出不等式解答即可.
    【详解】
    因为一次函数y=﹣2(x+1)+4的值是正数,
    可得:﹣2(x+1)+4>0,
    解得:x<1,
    故答案为x<1.
    【点睛】
    本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)k>-1;(2)2;(3)k>-1时,的值与k无关.
    【解析】
    (1)由题意得该方程的根的判别式大于零,列出不等式解答即可.
    (2)将要求的代数式通分相加转化为含有两根之和与两根之积的形式,再根据根与系数的关系代数求值即可.
    (3)结合(1)和(2)结论可见,k>-1时,的值为定值2,与k无关.
    【详解】
    (1)∵方程有两个不等实根,
    ∴△>0,
    即4+4k>0,∴k>-1
    (2)由根与系数关系可知
    x1+x2=-2 ,x1x2=-k,



    (3)由(1)可知,k>-1时,
    的值与k无关.
    【点睛】
    本题考查了一元二次方程的根的判别式,根与系数的关系等知识,熟练掌握相关知识点是解答关键.
    18、(1)200,;(2)a=0.45,b=70;(3)900名.
    【解析】
    (1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.
    【详解】
    解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=(名);
    (2)“非常喜欢”频数90,a= ;
    (3).
    故答案为(1)200,;(2)a=0.45,b=70;(3)900名.
    【点睛】
    此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.
    19、(1)AB与⊙O的位置关系是相切,证明见解析;(2)OA=1.
    【解析】
    (1)先判断AB与⊙O的位置关系,然后根据等腰三角形的性质即可解答本题;
    (2)根据题三角形的相似可以求得BD的长,从而可以得到OA的长.
    【详解】
    解:(1)AB与⊙O的位置关系是相切,
    证明:如图,连接OC.
    ∵OA=OB,C为AB的中点,
    ∴OC⊥AB.
    ∴AB是⊙O的切线;
    (2)∵ED是直径,
    ∴∠ECD=90°.
    ∴∠E+∠ODC=90°.
    又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,
    ∴∠BCD=∠E.
    又∵∠CBD=∠EBC,
    ∴△BCD∽△BEC.
    ∴.
    ∴BC2=BD•BE.
    ∵,
    ∴.
    ∴.
    设BD=x,则BC=2x.
    又BC2=BD•BE,
    ∴(2x)2=x(x+6).
    解得x1=0,x2=2.
    ∵BD=x>0,
    ∴BD=2.
    ∴OA=OB=BD+OD=2+3=1.

    【点睛】
    本题考查直线和圆的位置关系、等腰三角形的性质、三角形的相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    20、 (1)详见解析;(2)当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
    【解析】
    试题分析:(1)根据判别式△≥0恒成立即可判断方程一定有两个实数根;
    (2)先讨论x1,x2的正负,再根据根与系数的关系求解.
    试题解析:(1)关于x的方程x2﹣(2m+1)x+2m=0,
    ∴△=(2m+1)2﹣8m=(2m﹣1)2≥0恒成立,
    故方程一定有两个实数根;
    (2)①当x1≥0,x2≥0时,即x1=x2,
    ∴△=(2m﹣1)2=0,
    解得m=;
    ②当x1≥0,x2≤0时或x1≤0,x2≥0时,即x1+x2=0,
    ∴x1+x2=2m+1=0,
    解得:m=﹣;
    ③当x1≤0,x2≤0时,即﹣x1=﹣x2,
    ∴△=(2m﹣1)2=0,
    解得m=;
    综上所述:当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
    21、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.
    【解析】
    (1)将P(4,-1)代入,可求出解析式
    (2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线 中,可判断,且开口向上,所以y随x的增大而减小,再把x=-1,x=2代入即可求得.
    (3)观察图象可得,当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,这些点可能为x=0,x=1,三种情况,再根据对称轴在不同位置进行讨论即可.
    【详解】
    解:(1)由此抛物线顶点为P(4,-1),
    所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=, b=-8a=-2
    所以抛物线解析式为:;
    (2)由此抛物线经过点C(4,-1),
    所以 一1=16a+4b+3,即b=-4a-1.
    因为抛物线的开口向上,则有
    其对称轴为直线,而
    所以当-1≤x≤2时,y随着x的增大而减小
    当x=-1时,y=a+(4a+1)+3=4+5a
    当x=2时,y=4a-2(4a+1)+3=1-4a
    所以当-1≤x≤2时,1-4a≤y≤4+5a;
    (3)当a=1时,抛物线的解析式为y=x2+bx+3
    ∴抛物线的对称轴为直线
    由抛物线图象可知,仅当x=0,x=1或x=-时,抛物线上的点可能离x轴最远
    分别代入可得,当x=0时,y=3
    当x=1时,y=b+4
    当x=-时,y=-+3
    ①当一<0,即b>0时,3≤y≤b+4,
    由b+4=6解得b=2
    ②当0≤-≤1时,即一2≤b≤0时,△=b2-12<0,抛物线与x轴无公共点
    由b+4=6解得b=2(舍去);
    ③当 ,即b<-2时,b+4≤y≤3,
    由b+4=-6解得b=-10
    综上,b=2或-10
    【点睛】
    本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x轴距离的最大值的点不同.
    22、(1)w=﹣2x2+480x﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润1元(3)销售单价应定为100元
    【解析】
    (1)用每件的利润乘以销售量即可得到每天的销售利润,即 然后化为一般式即可;
    (2)把(1)中的解析式进行配方得到顶点式然后根据二次函数的最值问题求解;
    (3)求所对应的自变量的值,即解方程然后检验即可.
    【详解】
    (1)

    w与x的函数关系式为:
    (2)

    ∴当时,w有最大值.w最大值为1.
    答:销售单价定为120元时,每天销售利润最大,最大销售利润1元.
    (3)当时,
    解得:
    ∵想卖得快,
    不符合题意,应舍去.
    答:销售单价应定为100元.
    23、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).
    【解析】
    试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x, DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.
    试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB, ∴∠AEM=∠FEM.
    ②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.
    (2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.
    (3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG. ∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.

    考点:四边形综合题.
    24、(1)点C(1,);(1)①y=x1-x; ②y=-x1+1x+.
    【解析】
    试题分析:(1)求得二次函数y=ax1-4ax+c对称轴为直线x=1,把x=1代入y=x求得y=,即可得点C的坐标;(1)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m) ,根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax1-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,m)(m<1),过点A作AE⊥CD于E,则AE=1-m,CE=-m,
    根据勾股定理用m表示出AC的长,根据△ACD的面积等于10可求得m的值,即可得A点的坐标,分两种情况:第一种情况,若a>0,则点D在点C下方,求点D的坐标;第二种情况,若a<0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入y=ax1-4ax+c即可求得函数表达式.
    试题解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函数图像的对称轴为直线x=1.
    当x=1时,y=x=,∴C(1,).
    (1)①∵点D与点C关于x轴对称,∴D(1,-),∴CD=3.
    设A(m,m) (m<1),由S△ACD=3,得×3×(1-m)=3,解得m=0,∴A(0,0).
    由A(0,0)、 D(1,-)得解得a=,c=0.
    ∴y=x1-x.
    ②设A(m,m)(m<1),过点A作AE⊥CD于E,则AE=1-m,CE=-m,
    AC==(1-m),
    ∵CD=AC,∴CD=(1-m).
    由S△ACD=10得×(1-m)1=10,解得m=-1或m=6(舍去),∴m=-1.
    ∴A(-1,-),CD=5.
    若a>0,则点D在点C下方,∴D(1,-),
    由A(-1,-)、D(1,-)得解得
    ∴y=x1-x-3.
    若a<0,则点D在点C上方,∴D(1,),
    由A(-1,-)、D(1,)得解得
    ∴y=-x1+1x+.
    考点:二次函数与一次函数的综合题.

    相关试卷

    备战2023年北京市中考数学全真模拟试卷二(解析版): 这是一份备战2023年北京市中考数学全真模拟试卷二(解析版),共22页。

    北京市重点中学2023届中考数学全真模拟试题含解析: 这是一份北京市重点中学2023届中考数学全真模拟试题含解析,共19页。

    北京市楼梓庄中学2022年中考数学全真模拟试题含解析: 这是一份北京市楼梓庄中学2022年中考数学全真模拟试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,如果,那么代数式的值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map