搜索
    上传资料 赚现金
    英语朗读宝

    2022年吉林省大安县联考中考数学最后一模试卷含解析

    2022年吉林省大安县联考中考数学最后一模试卷含解析第1页
    2022年吉林省大安县联考中考数学最后一模试卷含解析第2页
    2022年吉林省大安县联考中考数学最后一模试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年吉林省大安县联考中考数学最后一模试卷含解析

    展开

    这是一份2022年吉林省大安县联考中考数学最后一模试卷含解析,共21页。试卷主要包含了已知抛物线c等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.△ABC的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是(  )
    A.13,5 B.6.5,3 C.5,2 D.6.5,2
    2.下列运算正确的是(  )
    A.x•x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x6
    3.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=(  )
    A. B.2 C. D.

    4.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是(  )

    A.∠ACB=90° B.OE=BE C.BD=BC D.
    5.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m,此时距喷水管的水平距离为 1 m,在如图 2 所示的坐标系中,该喷水管水流喷出的高度(m)与水平距离(m)之间的函数关系式是( )

    A. B.
    C. D.
    6.如果解关于x的分式方程时出现增根,那么m的值为
    A.-2 B.2 C.4 D.-4
    7.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是(  )
    A.将抛物线c沿x轴向右平移个单位得到抛物线c′ B.将抛物线c沿x轴向右平移4个单位得到抛物线c′
    C.将抛物线c沿x轴向右平移个单位得到抛物线c′ D.将抛物线c沿x轴向右平移6个单位得到抛物线c′
    8.如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为( )

    A.5 cm B.6 cm C.8 cm D.10 cm
    9.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为,则弦CD的长为( )

    A. B.3cm C. D.9cm
    10.下列四个几何体中,主视图与左视图相同的几何体有(  )

    A.1个 B.2个 C.3个 D.4个
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.
    12.如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么的正切值为___.

    13.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.
    14.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.

    15.Rt△ABC的边AB=5,AC=4,BC=3,矩形DEFG的四个顶点都在Rt△ABC的边上,当矩形DEFG的面积最大时,其对角线的长为_______.
    16.在△ABC中,AB=1,BC=2,以AC为边作等边三角形ACD,连接BD,则线段BD的最大值为_____.
    三、解答题(共8题,共72分)
    17.(8分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
    (1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;

    (2)若某函数是反比例函数(k>0),它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;

    (3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标_____,写出符合题意的其中一条抛物线解析式_____,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_____.(本小题只需直接写出答案)

    18.(8分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
    成绩分组
    频数
    频率
    50≤x<60
    8
    0.16
    60≤x<70
    12
    a
    70≤x<80

    0.5
    80≤x<90
    3
    0.06
    90≤x≤100
    b
    c
    合计

    1
    (1)写出a,b,c的值;
    (2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
    (3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.

    19.(8分)嘉兴市2010~2014年社会消费品零售总额及增速统计图如下:
    请根据图中信息,解答下列问题:
    (1)求嘉兴市2010~2014年社会消费品零售总额增速这组数据的中位数.
    (2)求嘉兴市近三年(2012~2014年)的社会消费品零售总额这组数据的平均数.
    (3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).

    20.(8分)如图,菱形中,分别是边的中点.求证:.

    21.(8分)(1)解方程:.
    (2)解不等式组:
    22.(10分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
    根据统计图的信息解决下列问题:
    本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是   ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
    23.(12分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.
    (参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)

    24.解不等式组,并将解集在数轴上表示出来.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为,
    【详解】
    解:如下图,
    ∵△ABC的三条边长分别是5,13,12,且52+122=132,
    ∴△ABC是直角三角形,
    其斜边为外切圆直径,
    ∴外切圆半径==6.5,
    内切圆半径==2,
    故选D.

    【点睛】
    本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.
    2、A
    【解析】
    根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:
    A、x•x4=x5,原式计算正确,故本选项正确;
    B、x6÷x3=x3,原式计算错误,故本选项错误;
    C、3x2﹣x2=2x2,原式计算错误,故本选项错误;
    D、(2x2)3=8x,原式计算错误,故本选项错误.
    故选A.
    3、C
    【解析】
    如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.
    【详解】
    解:如图所示,

    ∵BD=2、CD=1,
    ∴BC===,
    则sin∠BCA===,
    故选C.
    【点睛】
    本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.
    4、B
    【解析】
    根据垂径定理及圆周角定理进行解答即可.
    【详解】
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,故A正确;
    ∵点E不一定是OB的中点,
    ∴OE与BE的关系不能确定,故B错误;
    ∵AB⊥CD,AB是⊙O的直径,
    ∴,
    ∴BD=BC,故C正确;
    ∴,故D正确.
    故选B.
    【点睛】
    本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.
    5、D
    【解析】
    根据图象可设二次函数的顶点式,再将点(0,0)代入即可.
    【详解】
    解:根据图象,设函数解析式为
    由图象可知,顶点为(1,3)
    ∴,
    将点(0,0)代入得
    解得

    故答案为:D.
    【点睛】
    本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.
    6、D
    【解析】
    ,去分母,方程两边同时乘以(x﹣1),得:
    m+1x=x﹣1,由分母可知,分式方程的增根可能是1.
    当x=1时,m+4=1﹣1,m=﹣4,
    故选D.
    7、B
    【解析】
    ∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,
    ∴抛物线对称轴为x=﹣1.
    ∴抛物线与y轴的交点为A(0,﹣3).
    则与A点以对称轴对称的点是B(2,﹣3).
    若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.
    则B点平移后坐标应为(4,﹣3),
    因此将抛物线C向右平移4个单位.
    故选B.
    8、C
    【解析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.
    【详解】
    如图,连接AD.
    ∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得:AD=6(cm).
    ∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).
    故选C.

    【点睛】
    本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    9、B
    【解析】
    解:∵∠CDB=30°,
    ∴∠COB=60°,
    又∵OC=,CD⊥AB于点E,
    ∴,
    解得CE=cm,CD=3cm.
    故选B.
    考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.
    10、D
    【解析】
    解:①正方体的主视图与左视图都是正方形;
    ②球的主视图与左视图都是圆;
    ③圆锥主视图与左视图都是三角形;
    ④圆柱的主视图和左视图都是长方形;
    故选D.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.
    详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;
    用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:

    Aa、Ab、Ba、Bb.
    所以颜色搭配正确的概率是.
    故答案为:.
    点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    12、
    【解析】
    延长GF与CD交于点D,过点E作交DF于点M,设正方形的边长为,则解直角三角形可得,根据正切的定义即可求得的正切值
    【详解】
    延长GF与CD交于点D,过点E作交DF于点M,

    设正方形的边长为,则
    ,






    故答案为:
    【点睛】
    考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.
    13、-1
    【解析】
    根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.
    【详解】
    解:由已知得△=0,即4+4m=0,解得m=-1.
    故答案为-1.
    【点睛】
    本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.
    14、132°
    【解析】
    解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.
    15、或
    【解析】
    分两种情形画出图形分别求解即可解决问题
    【详解】
    情况1:如图1中,四边形DEFG是△ABC的内接矩形,设DE=CF=x,则BF=3-x
    ∵EF∥AC,
    ∴=
    ∴=
    ∴EF=(3-x)
    ∴S矩形DEFG=x•(3-x)=﹣(x-)2+3
    ∴x=时,矩形的面积最大,最大值为3,此时对角线=.
    情况2:如图2中,四边形DEFG是△ABC的内接矩形,设DE=GF=x,

    作CH⊥AB于H,交DG于T.则CH=,CT=﹣x,
    ∵DG∥AB,
    ∴△CDG∽△CAB,


    ∴DG=5﹣x,
    ∴S矩形DEFG=x(5﹣x)=﹣(x﹣)2+3,
    ∴x=时,矩形的面积最大为3,此时对角线==
    ∴矩形面积的最大值为3,此时对角线的长为或
    故答案为或
    【点睛】
    本题考查相似三角形的应用、矩形的性质、二次函数的最值等知识,解题的关键是学会用分类讨论的思想思考问题
    16、3
    【解析】
    以AB为边作等边△ABE,由题意可证△AEC≌△ABD,可得BD=CE,根据三角形三边关系,可求EC的最大值,即可求BD的最大值.
    【详解】
    如图:以AB为边作等边△ABE,

    ∵△ACD,△ABE是等边三角形,
    ∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,
    ∴∠EAC=∠BAD,且AE=AB,AD=AC,
    ∴△DAB≌△CAE(SAS)
    ∴BD=CE,
    若点E,点B,点C不共线时,EC<BC+BE;
    若点E,点B,点C共线时,EC=BC+BE.
    ∴EC≤BC+BE=3,
    ∴EC的最大值为3,即BD的最大值为3.
    故答案是:3
    【点睛】
    考查了旋转的性质,等边三角形的性质,全等三角形的判定和性质,以及三角形的三边关系,恰当添加辅助线构造全等三角形是本题的关键.

    三、解答题(共8题,共72分)
    17、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),对应的抛物线分别为 ; ;,偶数.
    【解析】
    (1)设正方形ABCD的边长为a,当点A在x轴负半轴、点B在y轴正半轴上时,可知3a=,求出a,
    (2)作DE、CF分别垂直于x、y轴,可知ADE≌△BAO≌△CBF,列出m的等式解出m,
    (3)本问的抛物线解析式不止一个,求出其中一个.
    【详解】
    解:(1)∵正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
    当点A在x轴正半轴、点B在y轴负半轴上时,
    ∴AO=1,BO=1,
    ∴正方形ABCD的边长为 ,
    当点A在x轴负半轴、点B在y轴正半轴上时,
    设正方形的边长为a,得3a=,
    ∴ ,
    所以伴侣正方形的边长为或;
    (2)作DE、CF分别垂直于x、y轴,

    知△ADE≌△BAO≌△CBF,
    此时,m<2,DE=OA=BF=m
    OB=CF=AE=2﹣m
    ∴OF=BF+OB=2
    ∴C点坐标为(2﹣m,2),
    ∴2m=2(2﹣m)
    解得m=1,
    反比例函数的解析式为y= ,
    (3)根据题意画出图形,如图所示:

    过C作CF⊥x轴,垂足为F,过D作DE⊥CF,垂足为E,
    ∴△CED≌△DGB≌△AOB≌△AFC,
    ∵C(3,4),即CF=4,OF=3,
    ∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,
    则D坐标为(﹣1,3);
    设过D与C的抛物线的解析式为:y=ax2+b,
    把D和C的坐标代入得: ,
    解得 ,
    ∴满足题意的抛物线的解析式为y=x2+ ;
    同理可得D的坐标可以为:(7,﹣3);(﹣4,7);(4,1),;
    对应的抛物线分别为 ; ;,
    所求的任何抛物线的伴侣正方形个数为偶数.
    【点睛】
    本题考查了二次函数的综合题.灵活运用相关知识是解题关键.
    18、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.
    【解析】
    (1)利用50≤x<60的频数和频率,根据公式:频率=频数÷总数先计算出样本总人数,再分别计算出a,b,c的值;
    (2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;
    (3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.
    【详解】
    解:(1)样本人数为:8÷0.16=50(名)
    a=12÷50=0.24,
    70≤x<80的人数为:50×0.5=25(名)
    b=50﹣8﹣12﹣25﹣3=2(名)
    c=2÷50=0.04
    所以a=0.24,b=2,c=0.04;
    (2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:
    1000×0.6=600(人)
    ∴这1000名学生中有600人的竞赛成绩不低于70分;
    (3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B
    从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:

    抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,
    ∴抽取的2名同学来自同一组的概率P==
    【点睛】
    本题考查了频数、频率、总数间关系及用列表法或树形图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.
    19、(115)这组数据的中位数为15.116%;(116)这组数据的平均数是115 11609.116亿元;(15)116016年社会消费品零售总额为115 15167×(115+15.116%)亿元.
    【解析】
    试题分析:(115)根据中位数的定义把这组数据从小到大排列,找出最中间的数即可得出答案;
    (116)根据平均数的定义,求解即可;
    (15)根据增长率的中位数,可得116016年的销售额.
    试题解析:解:(115)数据从小到大排列115.16%,116.5%,15.116%,16.115%,5.7%,
    则嘉兴市1160115~116015年社会消费品零售总额增速这组数据的中位数是15.116%;
    (116)嘉兴市近三年(1160116~116015年)的社会消费品零售总额这组数据的平均数是:
    (6.16+7.6+515.7+9.9+1150.0)÷5=11575.116(亿元);
    (15)从增速中位数分析,嘉兴市116016年社会消费品零售总额为1150×(115+15.116%)=16158.116716(亿元).
    考点:115.折线统计图;116.条形统计图;15.算术平均数;16.中位数..
    20、证明见解析.
    【解析】
    根据菱形的性质,先证明△ABE≌△ADF,即可得解.
    【详解】
    在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.
    ∵点E,F分别是BC,CD边的中点,
    ∴BE=BC,DF=CD,
    ∴BE=DF.
    ∴△ABE≌△ADF,
    ∴AE=AF.
    21、(1)无解;(1)﹣1<x≤1.
    【解析】
    (1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
    (1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
    【详解】
    (1)去分母得:1﹣x+1=﹣3x+6,
    解得:x=1,
    经检验x=1是增根,分式方程无解;
    (1),
    由①得:x>﹣1,
    由②得:x≤1,
    则不等式组的解集为﹣1<x≤1.
    【点睛】
    此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    22、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
    【解析】
    (1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
    (2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
    (3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
    【详解】
    解:(1)本次调查的学生有30÷20%=150人;
    (2)C类别人数为150﹣(30+45+15)=60人,
    补全条形图如下:

    (3)扇形统计图中C对应的中心角度数是360°×=144°
    故答案为144°
    (4)600×()=300(人),
    答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
    【点睛】
    本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.
    23、1.8米
    【解析】
    设PA=PN=x,Rt△APM中求得=1.6x, 在Rt△BPM中,解得x=3,MN=MP-NP=0.6x=1.8.
    【详解】
    在Rt△APN中,∠NAP=45°,
    ∴PA=PN,
    在Rt△APM中,,
    设PA=PN=x,
    ∵∠MAP=58°,
    ∴=1.6x,
    在Rt△BPM中,,
    ∵∠MBP=31°,AB=5,
    ∴,
    ∴ x=3,
    ∴MN=MP-NP=0.6x=1.8(米),
    答:广告牌的宽MN的长为1.8米.
    【点睛】
    熟练掌握三角函数的定义并能够灵活运用是解题的关键.
    24、原不等式组的解集为﹣4<x≤1,在数轴上表示见解析.
    【解析】
    分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案
    详解:解不等式①,得x>﹣4,
    解不等式②,得x≤1,
    把不等式①②的解集在数轴上表示如图

    原不等式组的解集为﹣4<x≤1.
    点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.

    相关试卷

    山东省聊城冠县联考2022年中考数学最后一模试卷含解析:

    这是一份山东省聊城冠县联考2022年中考数学最后一模试卷含解析,共18页。试卷主要包含了把一副三角板如图,太原市出租车的收费标准是,2cs 30°的值等于等内容,欢迎下载使用。

    吉林省白城地区大安县2022年中考数学模拟精编试卷含解析:

    这是一份吉林省白城地区大安县2022年中考数学模拟精编试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    吉林省大安县联考2021-2022学年中考数学对点突破模拟试卷含解析:

    这是一份吉林省大安县联考2021-2022学年中考数学对点突破模拟试卷含解析,共16页。试卷主要包含了已知,若  ,则括号内的数是,已知电流I等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map