2022届衡水市重点中学中考四模数学试题含解析
展开
这是一份2022届衡水市重点中学中考四模数学试题含解析,共22页。试卷主要包含了答题时请按要求用笔,若点A,|﹣3|的值是,点A关于原点对称的点的坐标是等内容,欢迎下载使用。
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为( )
A.4.5cmB.5.5cmC.6.5cmD.7cm
2.等腰三角形一边长等于5,一边长等于10,它的周长是( )
A.20B.25C.20或25D.15
3.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为( )
A.5B.6C.7D.9
4.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=( )
A.90°-αB.90°+ αC.D.360°-α
5.如图,△ABC纸片中,∠A=56,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD.则∠BDE的度数为( )
A.76°B.74°C.72°D.70°
6.若点A(a,b),B(,c)都在反比例函数y=的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是( )
A.B.
C.D.
7.|﹣3|的值是( )
A.3B.C.﹣3D.﹣
8.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有( )个〇.
A.6055B.6056C.6057D.6058
9.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是( )
A. B.
C. D.
10.点A(-2,5)关于原点对称的点的坐标是 ( )
A.(2,5) B.(2,-5) C.(-2,-5) D.(-5,-2)
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____.
12.计算:的值是______________.
13.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.
14.在中,::1:2:3,于点D,若,则______
15.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.
16.反比例函数的图象经过点和,则 ______ .
三、解答题(共8题,共72分)
17.(8分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如表:
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.
18.(8分)已知二次函数的图象如图6所示,它与轴的一个交点坐标为,与轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值为正数时,自变量的取值范围.
19.(8分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理竞争,合作双赢.
要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:
(1)参加本次讨论的学生共有 人;表中a= ,b= ;
(2)在扇形统计图中,求D所在扇形的圆心角的度数;
(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.
20.(8分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.
求证:AB=DC.
21.(8分)如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.
22.(10分)如图,⊙O是Rt△ABC的外接圆,∠C=90°,tanB=,过点B的直线l是⊙O的切线,点D是直线l上一点,过点D作DE⊥CB交CB延长线于点E,连接AD,交⊙O于点F,连接BF、CD交于点G.
(1)求证:△ACB∽△BED;
(2)当AD⊥AC时,求 的值;
(3)若CD平分∠ACB,AC=2,连接CF,求线段CF的长.
23.(12分)如图,在顶点为P的抛物线y=a(x-h)2+k(a≠0)的对称轴1的直线上取点A(h,k+),过A作BC⊥l交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线m⊥l.又分别过点B,C作直线BE⊥m和CD⊥m,垂足为E,D.在这里,我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形.
(1)直接写出抛物线y=x2的焦点坐标以及直径的长.
(2)求抛物线y=x2-x+的焦点坐标以及直径的长.
(3)已知抛物线y=a(x-h)2+k(a≠0)的直径为,求a的值.
(4)①已知抛物线y=a(x-h)2+k(a≠0)的焦点矩形的面积为2,求a的值.
②直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值.
24.如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.
(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;
(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N均在小正方形的顶点上;
(3)连接ME,并直接写出EM的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).
故选A.
考点:轴对称图形的性质
2、B
【解析】
题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.
【详解】
当5为腰时,三边长为5、5、10,而,此时无法构成三角形;
当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长
故选B.
3、B
【解析】
直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案.
【详解】
∵一组数据1,7,x,9,5的平均数是2x,
∴,
解得:,
则从大到小排列为:3,5,1,7,9,
故这组数据的中位数为:1.
故选B.
【点睛】
此题主要考查了中位数以及平均数,正确得出x的值是解题关键.
4、C
【解析】
试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,
∵PB和PC分别为∠ABC、∠BCD的平分线,
∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,
则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.
故选C.
考点:1.多边形内角与外角2.三角形内角和定理.
5、B
【解析】
直接利用三角形内角和定理得出∠ABC的度数,再利用翻折变换的性质得出∠BDE的度数.
【详解】
解:∵∠A=56°,∠C=88°,
∴∠ABC=180°-56°-88°=36°,
∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,
∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,
∴∠BDE=180°-18°-88°=74°.
故选:B.
【点睛】
此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键.
6、D
【解析】
将,代入,得,,然后分析与的正负,即可得到的大致图象.
【详解】
将,代入,得,,
即,.
∴.
∵,∴,∴.
即与异号.
∴.
又∵,
故选D.
【点睛】
本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.
7、A
【解析】
分析:根据绝对值的定义回答即可.
详解:负数的绝对值等于它的相反数,
故选A.
点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.
8、D
【解析】
设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a =1+3n(n为正整数)",再代入a=2019即可得出结论
【详解】
设第n个图形有an个〇(n为正整数),
观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,
∴an=1+3n(n为正整数),
∴a2019=1+3×2019=1.
故选:D.
【点睛】
此题考查规律型:图形的变化,解题关键在于找到规律
9、D
【解析】
分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.
详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;
B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;
C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;
D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;
故选D.
点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.
10、B
【解析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).
【详解】
根据中心对称的性质,得点P(−2,5)关于原点对称点的点的坐标是(2, −5).
故选:B.
【点睛】
考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2或2.
【解析】
本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.
【详解】
解:
当点在线段的延长线上时,如图3所示.
过点作于,
是正方形的对角线,
,
,
在中,由勾股定理,得:
,
在和中,,
,
,
当点在线段上时,如图4所示.
过作于.
是正方形的对角线,
,
在中,由勾股定理,得:
在和中,,
,
,
故答案为或.
【点睛】
本题主要考查了勾股定理和三角形全等的证明.
12、-1
【解析】
解:=-1.故答案为:-1.
13、2
【解析】
把点(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.
【详解】
∵抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),
∴1= -4+2(m-1)+3,解得m=2,故答案为2.
【点睛】
本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.
14、2.1
【解析】
先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.
【详解】
解:根据题意,设∠A、∠B、∠C为k、2k、3k,
则k+2k+3k=180°,
解得k=30°,
2k=60°,
3k=90°,
∵AB=10,
∴BC=AB=1,
∵CD⊥AB,
∴∠BCD=∠A=30°,
∴BD=BC=2.1.
故答案为2.1.
【点睛】
本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.
15、AC=BD.
【解析】
试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.
试题解析:添加的条件应为:AC=BD.
证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,
∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,
则HG∥EF且HG=EF,
∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,
∴四边形EFGH为菱形.
考点:1.菱形的性质;2.三角形中位线定理.
16、-1
【解析】
先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值.
【详解】
解:∵反比例函数y=的图象经过点(1,6),
∴6=,解得k=6,
∴反比例函数的解析式为y=.
∵点(m,-3)在此函数图象上上,
∴-3=,解得m=-1.
故答案为-1.
【点睛】
本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
三、解答题(共8题,共72分)
17、(1)2.1;(2)见解析;(3)x=2时,函数有最小值y=4.2
【解析】
(1)通过作辅助线,应用三角函数可求得HM+HN的值即为x=2时,y的值;
(2)可在网格图中直接画出函数图象;
(3)由函数图象可知函数的最小值.
【详解】
(1)当点P运动到点H时,AH=3,作HN⊥AB于点N.
∵在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,∴∠HAN=42°,∴AN=HN=AH•sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.
故答案为:2.1;
(2)
(3)根据函数图象可知,当x=2时,函数有最小值y=4.2.
故答案为:4.2.
【点睛】
本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
18、(1);(2).
【解析】
(1)将(-1,0)和(0,3)两点代入二次函数y=-x2+bx+c,求得b和c;从而得出抛物线的解析式;
(2)令y=0,解得x1,x2,得出此二次函数的图象与x轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x的取值范围.
【详解】
解:(1)由二次函数的图象经过和两点,
得,
解这个方程组,得
,
抛物线的解析式为,
(2)令,得.
解这个方程,得,.
∴此二次函数的图象与轴的另一个交点的坐标为.
当时,.
【点睛】
本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点.
19、(1)50、10、0.16;(2)144°;(3).
【解析】
(1)由B观点的人数和所占的频率即可求出总人数;由总人数即可求出a、b的值,
(2)用360°乘以D观点的频率即可得;
(3)画出树状图,然后根据概率公式列式计算即可得解
【详解】
解:(1)参加本次讨论的学生共有12÷0.24=50,
则a=50×0.2=10,b=8÷50=0.16,
故答案为50、10、0.16;
(2)D所在扇形的圆心角的度数为360°×0.4=144°;
(3)根据题意画出树状图如下:
由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,
所以选中观点D(合理竞争,合作双赢)的概率为.
【点睛】
此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
20、∵平分平分,
∴
在与中,
.
【解析】
分析:根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.
解答:证明:∵AC平分∠BCD,BC平分∠ABC,
∴∠DBC=∠ABC,∠ACB=∠DCB,
∵∠ABC=∠DCB,
∴∠ACB=∠DBC,
∵在△ABC与△DCB中,
,
∴△ABC≌△DCB,
∴AB=DC.
21、证明见解析
【解析】
试题分析:证明三角形△ABC△DEF,可得=.
试题解析:
证明:∵=,
∴BC=EF,
∵⊥,⊥,
∴∠B=∠E=90°,AC=DF,
∴△ABC△DEF,
∴AB=DE.
22、(1)详见解析;(2) ;(3).
【解析】
(1)只要证明∠ACB=∠E,∠ABC=∠BDE即可;
(2)首先证明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;
(3)想办法证明AB垂直平分CF即可解决问题.
【详解】
(1)证明:如图1中,
∵DE⊥CB,
∴∠ACB=∠E=90°,
∵BD是切线,
∴AB⊥BD,
∴∠ABD=90°,
∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,
∴∠ABC=∠BDE,
∴△ACB∽△BED;
(2)解:如图2中,
∵△ACB∽△BED;四边形ACED是矩形,
∴BE:DE:BC=1:2:4,
∵DF∥BC,
∴△GCB∽△GDF,
∴=;
(3)解:如图3中,
∵tan∠ABC==,AC=2,
∴BC=4,BE=4,DE=8,AB=2,BD=4,
易证△DBE≌△DBF,可得BF=4=BC,
∴AC=AF=2,
∴CF⊥AB,设CF交AB于H,
则CF=2CH=2×.
【点睛】
本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.
23、(1)4(1)4(3)(4)①a=±;②当m=1-或m=5+时,1个公共点,当1-<m≤1或5≤m<5+时,1个公共点,
【解析】
(1)根据题意可以求得抛物线y=x1的焦点坐标以及直径的长;
(1)根据题意可以求得抛物线y=x1-x+的焦点坐标以及直径的长;
(3)根据题意和y=a(x-h)1+k(a≠0)的直径为,可以求得a的值;
(4)①根据题意和抛物线y=ax1+bx+c(a≠0)的焦点矩形的面积为1,可以求得a的值;
②根据(1)中的结果和图形可以求得抛物线y=x1-x+的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值.
【详解】
(1)∵抛物线y=x1,
∴此抛物线焦点的横坐标是0,纵坐标是:0+=1,
∴抛物线y=x1的焦点坐标为(0,1),
将y=1代入y=x1,得x1=-1,x1=1,
∴此抛物线的直径是:1-(-1)=4;
(1)∵y=x1-x+=(x-3)1+1,
∴此抛物线的焦点的横坐标是:3,纵坐标是:1+=3,
∴焦点坐标为(3,3),
将y=3代入y=(x-3)1+1,得
3=(x-3)1+1,解得,x1=5,x1=1,
∴此抛物线的直径时5-1=4;
(3)∵焦点A(h,k+),
∴k+=a(x-h)1+k,解得,x1=h+,x1=h-,
∴直径为:h+-(h-)==,
解得,a=±,
即a的值是;
(4)①由(3)得,BC=,
又CD=A'A=.
所以,S=BC•CD=•==1.
解得,a=±;
②当m=1-或m=5+时,1个公共点,当1-<m≤1或5≤m<5+时,1个公共点,
理由:由(1)知抛,物线y=x1-x+的焦点矩形顶点坐标分别为:
B(1,3),C(5,3),E(1,1),D(5,1),
当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,m=1-或m=1+(舍去),过C(5,3)时,m=5-(舍去)或m=5+,
∴当m=1-或m=5+时,1个公共点;
当1-<m≤1或5≤m<5+时,1个公共点.
由图可知,公共点个数随m的变化关系为
当m<1-时,无公共点;
当m=1-时,1个公共点;
当1-<m≤1时,1个公共点;
当1<m<5时,3个公共点;
当5≤m<5+时,1个公共点;
当m=5+时,1个公共点;
当m>5+时,无公共点;
由上可得,当m=1-或m=5+时,1个公共点;
当1-<m≤1或5≤m<5+时,1个公共点.
【点睛】
考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答.
24、(1)画图见解析;(2)画图见解析;(3).
【解析】
(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;
(2)根据矩形的性质画出符合题意的图形;
(3)根据题意利用勾股定理得出结论.
【详解】
(1)如图所示;
(2)如图所示;
(3)如图所示,在直角三角形中,根据勾股定理得EM=.
【点睛】
本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理.
x/cm
0
1
2
3
4
5
y/cm
6.0
4.8
4.5
6.0
7.4
观点
频数
频率
A
a
0.2
B
12
0.24
C
8
b
D
20
0.4
相关试卷
这是一份2022年河北省衡水市达标名校中考四模数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2022年潮州市重点中学中考四模数学试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,实数的相反数是等内容,欢迎下载使用。
这是一份2022届玉林市重点中学中考四模数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔,|﹣3|的值是等内容,欢迎下载使用。