年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年广西南宁市邕宁区中学和中学中考数学四模试卷含解析

    2021-2022学年广西南宁市邕宁区中学和中学中考数学四模试卷含解析第1页
    2021-2022学年广西南宁市邕宁区中学和中学中考数学四模试卷含解析第2页
    2021-2022学年广西南宁市邕宁区中学和中学中考数学四模试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年广西南宁市邕宁区中学和中学中考数学四模试卷含解析

    展开

    这是一份2021-2022学年广西南宁市邕宁区中学和中学中考数学四模试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,若点A等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是( )

    A.甲的速度是70米/分 B.乙的速度是60米/分
    C.甲距离景点2100米 D.乙距离景点420米
    2.一、单选题
    小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是(  )
    A. B. C. D.
    3.如图所示,a∥b,直线a与直线b之间的距离是( )

    A.线段PA的长度 B.线段PB的长度
    C.线段PC的长度 D.线段CD的长度
    4.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是(  )
    A.32,31 B.31,32 C.31,31 D.32,35
    5.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为(  )
    A.0 B.﹣1 C.1 D.2
    6.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数的图象与x轴有两个不同交点的概率是( ).
    A. B. C. D.
    7.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是(  )
    A.﹣5 B.﹣3 C.3 D.1
    8.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是  

    A.5 B.6 C.7 D.8
    9.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是(  )

    A.﹣5 B. C. D.7
    10.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为(  )
    A.64×105 B.6.4×105 C.6.4×106 D.6.4×107
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.规定一种新运算“*”:a*b=a-b,则方程x*2=1*x的解为________.
    12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.
    A.如图,在平面直角坐标系中,点的坐标为,沿轴向右平移后得到,点的对应点是直线上一点,则点与其对应点间的距离为__________.

    B.比较__________的大小.
    13.用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为   cm2(精确到1cm2).

    14.分解因式:x2y﹣6xy+9y=_____.
    15.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.
    16.将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是_____.
    三、解答题(共8题,共72分)
    17.(8分)(1)计算:sin45°
    (2)解不等式组:
    18.(8分)已知抛物线y=ax2+bx+c.
    (Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)
    ①求该抛物线的解析式;
    ②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.
    设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6≤S≤6+8时,求x的取值范围;
    (Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.
    19.(8分)已知反比例函数的图象过点A(3,2).
    (1)试求该反比例函数的表达式;
    (2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

    20.(8分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.

    (1)判断直线l与⊙O的位置关系,并说明理由;
    (2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;
    (3)在(2)的条件下,若DE=4,DF=3,求AF的长.
    21.(8分)如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G
    (1)求证:直线AB是⊙O的切线;
    (2)求证:△GOC∽△GEF;
    (3)若AB=4BD,求sinA的值.

    22.(10分)如图,以△ABC的一边AB为直径作⊙O, ⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E.
    (1) 求证:DE⊥AC;
    (2) 连结OC交DE于点F,若,求的值.

    23.(12分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE
    求证:(1)△ABF≌△DCE;四边形ABCD是矩形.

    24.我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=(m2﹣n2),b=mn,c=(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据图中信息以及路程、速度、时间之间的关系一一判断即可.
    【详解】
    甲的速度==70米/分,故A正确,不符合题意;
    设乙的速度为x米/分.则有,660+24x-70×24=420,
    解得x=60,故B正确,本选项不符合题意,
    70×30=2100,故选项C正确,不符合题意,
    24×60=1440米,乙距离景点1440米,故D错误,
    故选D.
    【点睛】
    本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
    2、C
    【解析】
    解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,
    可列方程得,
    故选C.
    【点睛】
    本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.
    3、A
    【解析】
    分析:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,由此可得出答案.
    详解:∵a∥b,AP⊥BC
    ∴两平行直线a、b之间的距离是AP的长度
    ∴根据平行线间的距离相等
    ∴直线a与直线b之间的距离AP的长度
    故选A.
    点睛:本题考查了平行线之间的距离,属于基础题,关键是掌握平行线之间距离的定义.
    4、C
    【解析】
    分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
    解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数.所以本题这组数据的中位数是1,众数是1.
    故选C.
    5、C
    【解析】
    试题分析:把方程的解代入方程,可以求出字母系数a的值.
    ∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.
    故本题选C.
    【考点】一元二次方程的解;一元二次方程的定义.
    6、C
    【解析】
    分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有两个不同的交点,则最低点要小于0,即4n-m2<0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.
    解答:解:掷骰子有6×6=36种情况.
    根据题意有:4n-m2<0,
    因此满足的点有:n=1,m=3,4,5,6,
    n=2,m=3,4,5,6,
    n=3,m=4,5,6,
    n=4,m=5,6,
    n=5,m=5,6,
    n=6,m=5,6,
    共有17种,
    故概率为:17÷36=.
    故选C.
    点评:本题考查的是概率的公式和二次函数的图象问题.要注意画出图形再进行判断,找出满足条件的点.
    7、D
    【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.
    【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,
    ∴1+m=3、1﹣n=2,
    解得:m=2、n=﹣1,
    所以m+n=2﹣1=1,
    故选D.
    【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.
    8、B
    【解析】
    根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.
    【详解】
    解:∵半径OC垂直于弦AB,
    ∴AD=DB= AB=
    在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+( )2,
    解得,OA=4
    ∴OD=OC-CD=3,
    ∵AO=OE,AD=DB,
    ∴BE=2OD=6
    故选B
    【点睛】
    本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键
    9、C
    【解析】
    把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.
    【详解】
    把(-2,0)和(0,1)代入y=kx+b,得

    解得
    所以,一次函数解析式y=x+1,
    再将A(3,m)代入,得
    m=×3+1=.
    故选C.
    【点睛】
    本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.
    10、C
    【解析】
    由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:6400000=6.4×106,
    故选C.
    点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    根据题中的新定义化简所求方程,求出方程的解即可.
    【详解】
    根据题意得:x-×2=×1-,
    x=,
    解得:x=,
    故答案为x=.
    【点睛】
    此题的关键是掌握新运算规则,转化成一元一元一次方程,再解这个一元一次方程即可.
    12、5 >
    【解析】
    A:根据平移的性质得到OA′=OA,OO′=BB′,根据点A′在直线求出A′的横坐标,进而求出OO′的长度,最后得到BB′的长度;B:根据任意角的正弦值等于它余角的余弦值将sin53°化为cos37°,再进行比较.
    【详解】
    A:由平移的性质可知,OA′=OA=4,OO′=BB′.因为点A′在直线上,将y=4代入,得到x=5.所以OO′=5,又因为OO′=BB′,所以点B与其对应点B′间的距离为5.故答案为5.
    B:sin53°=cos(90°-53°)=cos37°,
    tan37°= ,
    根据正切函数与余弦函数图像可知,tan37°>tan30°,cos37°>cos45°,
    即tan37°> ,cos37°< ,
    又∵,∴tan37°<cos37°,即sin53°>tan37°.故答案是>.
    【点睛】
    本题主要考查图形的平移、一次函数的解析式和三角函数的图像,熟练掌握这些知识并灵活运用是解答的关键.
    13、174cm1.
    【解析】

    直径为10cm的玻璃球,玻璃球半径OB=5,所以AO=18−5=13,由勾股定理得,AB=11,
    ∵BD×AO=AB×BO,BD=,
    圆锥底面半径=BD=,圆锥底面周长=1×π,侧面面积=×1×π×11=.
    点睛: 利用勾股定理可求得圆锥的母线长,进而过B作出垂线,得到圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷1.本题是一道综合题,考查的知识点较多,利用了勾股定理,圆的周长公式、圆的面积公式和扇形的面积公式求解.把实际问题转化为数学问题求解是本题的解题关键.
    14、y(x﹣3)2
    【解析】
    本题考查因式分解.
    解答:.
    15、4.02×1.
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:40.2万=4.02×1,
    故答案为:4.02×1.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    16、1
    【解析】
    根据平移规律“左加右减,上加下减”填空.
    【详解】
    解:将抛物线y=(x+m)1向右平移1个单位后,得到抛物线解析式为y=(x+m-1)1.其对称轴为:x=1-m=0,
    解得m=1.
    故答案是:1.
    【点睛】
    主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.

    三、解答题(共8题,共72分)
    17、(1);(2)﹣2<x≤1.
    【解析】
    (1)根据绝对值、特殊角的三角函数值可以解答本题;
    (2)根据解一元一次不等式组的方法可以解答本题.
    【详解】
    (1)sin45°
    =3-+×-5+×
    =3-+3-5+1
    =7--5;
    (2)(2)
    由不等式①,得
    x>-2,
    由不等式②,得
    x≤1,
    故原不等式组的解集是-2<x≤1.
    【点睛】
    本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.
    18、(Ⅰ)①y=x2+3x②当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤(Ⅱ)ac≤1
    【解析】
    (I)①由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,②根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x<0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,当点P在第四象限时,x>0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0<x<c时y>0,可得出抛物线的对称轴x=≥c,进而可得出b≤-2ac,结合b=-ac-1即可得出ac≤1.
    【详解】
    (I)①设抛物线的解析式为y=a(x+2)2﹣3,
    ∵抛物线经过点B(﹣3,0),
    ∴0=a(﹣3+2)2﹣3,
    解得:a=1,
    ∴该抛物线的解析式为y=(x+2)2﹣3=x2+3x.
    ②设直线AB的解析式为y=kx+m(k≠0),
    将A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,
    得:,解得:,
    ∴直线AB的解析式为y=﹣2x﹣2.
    ∵直线l与AB平行,且过原点,
    ∴直线l的解析式为y=﹣2x.
    当点P在第二象限时,x<0,如图所示.
    S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,
    ∴S=S△POB+S△AOB=﹣3x+2(x<0).
    ∵3+6≤S≤6+2,
    ∴,即,
    解得:≤x≤,
    ∴x的取值范围是≤x≤.
    当点P′在第四象限时,x>0,
    过点A作AE⊥x轴,垂足为点E,过点P′作P′F⊥x轴,垂足为点F,则
    S四边形AEOP′=S梯形AEFP′﹣S△OFP′=•(x+2)﹣•x•(2x)=3x+3.
    ∵S△ABE=×2×3=3,
    ∴S=S四边形AEOP′+S△ABE=3x+2(x>0).
    ∵3+6≤S≤6+2,
    ∴,即,
    解得:≤x≤,
    ∴x的取值范围为≤x≤.
    综上所述:当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤.
    (II)ac≤1,理由如下:
    ∵当x=c时,y=0,
    ∴ac2+bc+c=0,
    ∵c>1,
    ∴ac+b+1=0,b=﹣ac﹣1.
    由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0).
    把x=0代入y=ax2+bx+c,得y=c,
    ∴抛物线与y轴的交点为(0,c).
    ∵a>0,
    ∴抛物线开口向上.
    ∵当0<x<c时,y>0,
    ∴抛物线的对称轴x=﹣≥c,
    ∴b≤﹣2ac.
    ∵b=﹣ac﹣1,
    ∴﹣ac﹣1≤﹣2ac,
    ∴ac≤1.

    【点睛】
    本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)①巧设顶点式,代入点B的坐标求出a值,②分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b≤-2ac.
    19、(1);(2)MB=MD.
    【解析】
    (1)将A(3,2)分别代入y= ,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;
    (2)有S△OMB=S△OAC=×=3 ,可得矩形OBDC的面积为12;即OC×OB=12 ;进而可得m、n的值,故可得BM与DM的大小;比较可得其大小关系.
    【详解】
    (1)将A(3,2)代入中,得2,∴k=6,
    ∴反比例函数的表达式为.
    (2)BM=DM,理由:∵S△OMB=S△OAC=×=3,
    ∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,
    即OC·OB=12,
    ∵OC=3,∴OB=4,即n=4,∴,
    ∴MB=,MD=,∴MB=MD.
    【点睛】
    本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.
    20、(1)直线l与⊙O相切;(2)证明见解析;(3).
    【解析】
    试题分析:(1)连接OE、OB、OC.由题意可证明,于是得到∠BOE=∠COE,由等腰三角形三线合一的性质可证明OE⊥BC,于是可证明OE⊥l,故此可证明直线l与⊙O相切;
    (2)先由角平分线的定义可知∠ABF=∠CBF,然后再证明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依据等角对等边证明BE=EF即可;
    (3)先求得BE的长,然后证明△BED∽△AEB,由相似三角形的性质可求得AE的长,于是可得到AF的长.
    试题解析:(1)直线l与⊙O相切.理由如下:
    如图1所示:连接OE、OB、OC.

    ∵AE平分∠BAC,
    ∴∠BAE=∠CAE.
    ∴.
    ∴∠BOE=∠COE.
    又∵OB=OC,
    ∴OE⊥BC.
    ∵l∥BC,
    ∴OE⊥l.
    ∴直线l与⊙O相切.
    (2)∵BF平分∠ABC,
    ∴∠ABF=∠CBF.
    又∵∠CBE=∠CAE=∠BAE,
    ∴∠CBE+∠CBF=∠BAE+∠ABF.
    又∵∠EFB=∠BAE+∠ABF,
    ∴∠EBF=∠EFB.
    ∴BE=EF.
    (3)由(2)得BE=EF=DE+DF=1.
    ∵∠DBE=∠BAE,∠DEB=∠BEA,
    ∴△BED∽△AEB.
    ∴,即,解得;AE=,
    ∴AF=AE﹣EF=﹣1=.
    考点:圆的综合题.
    21、 (1)见解析;(2)见解析;(3).
    【解析】
    (1)利用等腰三角形的性质,证明OC⊥AB即可;
    (2)证明OC∥EG,推出△GOC∽△GEF即可解决问题;
    (3)根据勾股定理和三角函数解答即可.
    【详解】
    证明:(1)∵OA=OB,AC=BC,
    ∴OC⊥AB,
    ∴⊙O是AB的切线.
    (2)∵OA=OB,AC=BC,
    ∴∠AOC=∠BOC,
    ∵OE=OF,
    ∴∠OFE=∠OEF,
    ∵∠AOB=∠OFE+∠OEF,
    ∴∠AOC=∠OEF,
    ∴OC∥EF,
    ∴△GOC∽△GEF,
    ∴,
    ∵OD=OC,
    ∴OD•EG=OG•EF.
    (3)∵AB=4BD,
    ∴BC=2BD,设BD=m,BC=2m,OC=OD=r,
    在Rt△BOC中,∵OB2=OC2+BC2,
    即(r+m)2=r2+(2m)2,
    解得:r=1.5m,OB=2.5m,
    ∴sinA=sinB=.
    【点睛】
    考查圆的综合题,考查切线的判定、等腰三角形的性质、平行线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
    22、(1)证明见解析(2)
    【解析】
    (1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.
    (2)连接AD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.
    【详解】
    解:(1)连接OD . ∵DE是⊙O的切线,
    ∴DE⊥OD,即∠ODE=90° .
    ∵AB是⊙O的直径,
    ∴O是AB的中点.
    又∵D是BC的中点, .
    ∴OD∥AC .
    ∴∠DEC=∠ODE= 90° .
    ∴DE⊥AC .
    (2)连接AD . ∵OD∥AC,
    ∴.
    ∵AB为⊙O的直径, ∴∠ADB= ∠ADC =90° .
    又∵D为BC的中点,
    ∴AB=AC.
    ∵sin∠ABC==,
    设AD= 3x , 则AB=AC=4x, OD= 2x.
    ∵DE⊥AC, ∴∠ADC= ∠AED= 90°.
    ∵∠DAC= ∠EAD, ∴△ADC∽△AED.
    ∴.
    ∴.
    ∴. ∴.
    ∴.

    23、(1)见解析;(2)见解析.
    【解析】
    (1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.
    (2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.
    【详解】
    (1)∵BE=CF,BF=BE+EF,CE=CF+EF,
    ∴BF=CE.
    ∵四边形ABCD是平行四边形,
    ∴AB=DC.
    在△ABF和△DCE中,
    ∵AB=DC,BF=CE,AF=DE,
    ∴△ABF≌△DCE.
    (2)∵△ABF≌△DCE,
    ∴∠B=∠C.
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD.
    ∴∠B+∠C=180°.
    ∴∠B=∠C=90°.
    ∴平行四边形ABCD是矩形.
    24、 (1)证明见解析;(2)当n=5时,一边长为37的直角三角形另两边的长分别为12,1.
    【解析】
    (1)根据题意只需要证明a2+b2=c2,即可解答
    (2)根据题意将n=5代入得到a= (m2﹣52),b=5m,c= (m2+25),再将直角三角形的一边长为37,分别分三种情况代入a= (m2﹣52),b=5m,c= (m2+25),即可解答
    【详解】
    (1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,
    c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,
    ∴a2+b2=c2,
    ∵n为正整数,
    ∴a、b、c是一组勾股数;
    (2)解:∵n=5
    ∴a= (m2﹣52),b=5m,c= (m2+25),
    ∵直角三角形的一边长为37,
    ∴分三种情况讨论,
    ①当a=37时, (m2﹣52)=37,
    解得m=±3 (不合题意,舍去)
    ②当y=37时,5m=37,
    解得m= (不合题意舍去);
    ③当z=37时,37= (m2+n2),
    解得m=±7,
    ∵m>n>0,m、n是互质的奇数,
    ∴m=7,
    把m=7代入①②得,x=12,y=1.
    综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,1.
    【点睛】
    此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键

    相关试卷

    2023-2024学年广西南宁市邕宁区民族中学八年级(下)期末数学试卷(含详细答案解析):

    这是一份2023-2024学年广西南宁市邕宁区民族中学八年级(下)期末数学试卷(含详细答案解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广西南宁市邕宁区中学和中学2023-2024学年数学九上期末经典模拟试题含答案:

    这是一份广西南宁市邕宁区中学和中学2023-2024学年数学九上期末经典模拟试题含答案,共8页。试卷主要包含了若点,,在反比例函数等内容,欢迎下载使用。

    广西自治区南宁市邕宁区2023年中考数学全真模拟试卷含解析及点睛:

    这是一份广西自治区南宁市邕宁区2023年中考数学全真模拟试卷含解析及点睛,共19页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map