![2022年九年级中考复习一次函数与反比例函数综合应用(无答案)第1页](http://m.enxinlong.com/img-preview/2/3/12950257/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年九年级中考复习一次函数与反比例函数综合应用(无答案)第2页](http://m.enxinlong.com/img-preview/2/3/12950257/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年九年级中考复习一次函数与反比例函数综合应用(无答案)
展开
这是一份2022年九年级中考复习一次函数与反比例函数综合应用(无答案),共5页。
一次函数与反比例函数综合应用1.如图,一次函数的图象与反比例函数的图象交于,两点.求一次函数与反比例函数的表达式;求的面积;根据所给条件,请直接写出不等式的解集. 2.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围. 3.如图,一次函数y=kx+b与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;(2)直接写出当x>0时,kx+b<的解集.(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小. 4.如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB═,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;(3)求S△OEB. 5.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.求一次函数和反比例函数的表达式;请直接写出时,x的取值范围;过点B作轴,于点D,点C是直线BE上一点,若,求点C的坐标. 6.如图,一次函数的图象与反比例函数的图象相交于,两点.(1)求一次函数和反比例函数的表达式;(2)直线交轴于点,点是轴上的点,若的面积是4,求点的坐标. 7.如图,一次函数y=kx﹣2k(k≠0)的图象与反比例函数y=(m﹣1≠0)的图象交于点C,与x轴交于点A,过点C作CB⊥y轴,垂足为B,若S△ABC=3.(1)求点A的坐标及m的值;(2)若AB=2,求一次函数的表达式. 8.如图,一次函数的图象与反比例函数的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数的图象向下平移2个单位,求平移后的图象与反比例函数图象的交点坐标;(3)直接写出一个一次函数,使其过点,且与反比例函数的图象没有公共点. 9.如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=秒时,点Q的坐标是 ;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值. 10.如图,在平面直角坐标系xOy中,点A是反比例函数y= (x>0,m>1)图象上一点,点A的横坐标为m,点B(0,﹣m)是y轴负半轴上的一点,连接AB,AC⊥AB,交y轴于点C,延长CA到点D,使得AD=AC,过点A作AE平行于x轴,过点D作y轴平行线交AE于点E.(1)当m=3时,求点A的坐标;(2)DE= ,设点D的坐标为(x,y),求y关于x的函数关系式和自变量的取值范围;(3)连接BD,过点A作BD的平行线,与(2)中的函数图象交于点F,当m为何值时,以A、B、D、F为顶点的四边形是平行四边形?
相关试卷
这是一份数学中考复习重难点突破——二次函数与一次函数的综合应用,共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年九年级中考数学考点归类复习——一次函数(无答案),共7页。试卷主要包含了已知直线y=-3x+b经过点A等内容,欢迎下载使用。
这是一份2023年中考苏科版数学一轮复习专题练习-一次函数与反比例函数综合应用,共6页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)