所属成套资源:2022年中考数学二轮复习重难题型突破
- 类型4题型6二次函数与等腰三角形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版) 试卷 4 次下载
- 类型4题型7二次函数与直角三角形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版) 试卷 3 次下载
- 类型4题型9二次函数与菱形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版) 试卷 3 次下载
- 类型4题型10二次函数与矩形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版) 试卷 3 次下载
- 类型4题型11二次函数与正方形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版) 试卷 2 次下载
类型4题型8二次函数与平行四边形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版)
展开
这是一份类型4题型8二次函数与平行四边形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型8二次函数与平行四边形有关的问题教师版doc、题型8二次函数与平行四边形有关的问题学生版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
(1)求抛物线的解析式.
(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.
(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.
【答案】(1)yx2﹣2x﹣3;(2)满足条件的点E的坐标为(0,3)、(0,﹣3+)、(0,﹣3﹣)、(0,﹣);(3)存在,P(﹣1+2,0)、Q(1+2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).
【解析】
【分析】
(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;
(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;
(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.
【详解】
解:(1)∵抛物线的顶点为(1,﹣4),
∴设抛物线的解析式为y=a(x﹣1)2﹣4,
将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,
∴a=1,
∴抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;
(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,
令y=0,则x2﹣2x﹣3=0,
∴x=﹣1或x=3,
∴B(3,0),A(﹣1,0),
令x=0,则y=﹣3,
∴C(0,﹣3),
∴AC=,
设点E(0,m),则AE=,CE=|m+3|,
∵△ACE是等腰三角形,
∴①当AC=AE时,=,
∴m=3或m=﹣3(点C的纵坐标,舍去),
∴E(3,0),
②当AC=CE时,=|m+3|,
∴m=﹣3±,
∴E(0,﹣3+)或(0,﹣3﹣),
③当AE=CE时,=|m+3|,
∴m=﹣,
∴E(0,﹣),
即满足条件的点E的坐标为(0,3)、(0,﹣3+)、(0,﹣3﹣)、(0,﹣);
(3)如图,存在,∵D(1,﹣4),
∴将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,
∴点Q的纵坐标为4,
设Q(t,4),
将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,
∴t=1+2或t=1﹣2,
∴Q(1+2,4)或(1﹣2,4),
分别过点D,Q作x轴的垂线,垂足分别为F,G,
∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),
∴FB=PG=3﹣1=2,
∴点P的横坐标为(1+2)﹣2=﹣1+2或(1﹣2)﹣2=﹣1﹣2,
即P(﹣1+2,0)、Q(1+2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).
【点睛】
此题主要考查待定系数法求二次函数解析式、二次函数与几何综合,熟练掌握二次函数的图象和性质是解题关键.
【典例2】如图,抛物线与直线交于两点,其中点在轴上,点的坐标为。点是轴右侧的抛物线上一动点,过点作轴于点,交于点.
(1)求抛物线的解析式;
(2)若点的横坐标为,当为何值时,以为顶点的四边形是平行四边形?请说明理由。
【解析】(1)∵直线经过点,∴
∵抛物线经过点,
∴
∴抛物线的解析式为
(2)∵点的横坐标为且在抛物线上
∴
∵∥,∴当时,以为顶点的四边形是平行四边形
当时,
∴,解得:
即当或时,四边形是平行四边形
当时,
,解得:(舍去)
即当时,四边形是平行四边形
【典例3】已知抛物线与x轴交于点A,B两点(A在B的左侧)与y轴交于点C.
(1)直接写出点A,B,C的坐标;
(2)将抛物线经过向下平移,使得到的抛物线与x轴交于B, 两点(在B的右侧),顶点D的对应点,若,求的坐标和抛物线的解析式;
(3)在(2)的条件下,若点Q在x轴上,则在抛物线或上是否存在点P,使以为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.
【答案】(1)A(-3,0),B(1,0),(0,3);(2)B(3,0),y2=-x2+4x-3;(3)P的坐标为(-2,3),(-1+,-3),(-1-,-3),(0,-3),(4,-3).
【解析】
【分析】
(1)令y=0,即可求出A,B,令x=0,即可求出C的坐标;
(2)设B(t,0),根据由题意得y2由y1平移所得,可设y2的解析式为:y2=-(x-1)(x-t)=-x2+(1+t)x-t,求出D,判断出△BDB是等腰直角三角形,可得yD=|BB|,即可得到关于t的方程,解出t即可求出B的坐标和y2的解析式;
(3)分①若Q在B右边,②若Q在B左边:当BQ为边时和当BQ为对角线时,这几种情况讨论即可.
【详解】
解:(1)由题意得抛物线与x轴交于点A,B两点(A在B的左侧)与y轴交于点C,
∴当y=0时,
即(x+3)(1-x)=0
解得x1=-3,x2=1,
∴A的坐标为(-3,0),B的坐标为(1,0),
当x=0时,y=-02-2×0+3=3,
∴C的坐标为(0,3),
综上:A(-3,0),B(1,0),(0,3);
(2)设B(t,0),
由题意得y2由y1平移所得,
∴a=-1,
∴可设y2的解析式为:y2=-(x-1)(x-t)=-x2+(1+t)x-t,
∴D(,),
∵B和B是对称点,D在对称轴上,∠BDB=90°,
∴△BDB是等腰直角三角形,
∴yD=|BB|,
∴=(t-1),
解得t=3,
∴B(3,0),
∴y2=-x2+4x-3;
(3)①若Q在B右边,则P在x轴上方,且CP∥BQ,
∴yP=yC=3,
此时P不在两条抛物线上,不符合题意舍去;
②若Q在B左边,
当BQ为边时,则CP∥BQ,
此时yP=yC=3,P点在y1上,
将yP=3,代入y1得,
解得x1=0,x2=-2,
∴此时P的坐标为(-2,3);
当BQ为对角线时,则BC∥QP,
∵yC-yB=3,
∴yQ-yP=3,
∵Q在x轴上,
∴yP=-3,
将yP=-3代入y1得,
解得x1=-1+,x2=-1-,
将yP=-3代入y2得-x2+4x-3=-3,
解得x1=0,x2=4,
∴P的坐标为:(-1+,-3),(-1-,-3),(0,-3),(4,-3),
综上:P的坐标为:(-2,3),(-1+,-3),(-1-,-3),(0,-3),(4,-3).
【点睛】
本题考查了二次函数的性质,直角三角形斜边上的中线等于斜边的一半,平行四边形的性质,结合题意灵活运用知识点是解题关键.
【典例4】如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.
(1)求抛物线的解析式;
(2)当四边形ODEF是平行四边形时,求点P的坐标;
【解析】解:(1)∵点A(﹣1,0)、B(3,0)在抛物线y=ax2+bx+3上,
∴,
解得a=﹣1,b=2,
∴抛物线的解析式为:y=﹣x2+2x+3.
(2)在抛物线解析式y=﹣x2+2x+3中,令x=0,得y=3,∴C(0,3).
设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)坐标代入得:
,
解得k=﹣1,b=3,
∴y=﹣x+3.
设E点坐标为(x,﹣x2+2x+3),则P(x,0),F(x,﹣x+3),
∴EF=yE﹣yF=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x.
∵四边形ODEF是平行四边形,
∴EF=OD=2,
∴﹣x2+3x=2,即x2﹣3x+2=0,
解得x=1或x=2,
∴P点坐标为(1,0)或(2,0).
【典例5】如图,抛物线与轴交于点C,与轴交于A、B两点,,.
(1)求点B的坐标;
(2)求抛物线的解析式及顶点坐标;
(3)设点E在轴上,点F在抛物线上,如果A、C、E、F构成平行四边形,请写出点E的坐标(不必书写计算过程).
C
A
B
O
y
x
【解析】解:(1)∵
∴C (0,3)
又∵tan∠OCA=
∴A(1,0)
又∵S△ABC=6
∴
∴AB=4 ∴B(,0)
(2)把A(1,0)、B(,0)代入得:
∴,
∴
∵
∴顶点坐标(,)
(3)①AC为平行四边形的一边时
E1析(,0)
E2(,0)
E3(,0)
②AC为平行四边形的对角线时
E4(3,0)
【典例6】如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.
(1)分别求出直线AB和这条抛物线的解析式.
(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.
(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
【解析】:
(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;
(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到
当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;
(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.
【答案】解:(1)把A(3,0)B(0,﹣3)代入y=x2+mx+n,得
解得,所以抛物线的解析式是y=x2﹣2x﹣3.
设直线AB的解析式是y=kx+b,
把A(3,0)B(0,﹣3)代入y=kx+b,得,解得,
所以直线AB的解析式是y=x﹣3;
(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),
因为p在第四象限,
所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,
当t=﹣=时,二次函数的最大值,即PM最长值为=,
则S△ABM=S△BPM+S△APM==.
(3)存在,理由如下:
∵PM∥OB,
∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,
①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3.
②当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;
③当P在第三象限:PM=OB=3,t2﹣3t=3,解得t1=(舍去),t2=,所以P点的横坐标是.
所以P点的横坐标是或.
【典例7】如图,抛物线经过三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
x
y
A
O
C
B
【解析】解:(1)设抛物线的解析式为 ,
x
y
A
O
C
B
P
N
M
H
根据题意,得,
解得
∴抛物线的解析式为:
(2)由题意知,点A关于抛物线对称轴的对称点为点B,连接BC交抛物线的对称轴于点P,则P点 即为所求.
设直线BC的解析式为,
由题意,得解得
∴直线BC的解析式为
∵抛物线的对称轴是,
∴当时,
∴点P的坐标是.
(3)存在
( = 1 \* rman i)当存在的点N在x轴的下方时,如图所示,∵四边形ACNM是平行四边形,∴CN∥x轴,∴点C与点N关于对称轴x=2对称,∵C点的坐标为,∴点N的坐标为 ( = 2 \* ROMAN II)当存在的点在x轴上方时,如图所示,作轴于点H,∵四边形是平行四边形,∴,
∴Rt△CAO ≌Rt△,∴.
∵点C的坐标为,即N点的纵坐标为,
∴即
解得
∴点的坐标为和.
综上所述,满足题目条件的点N共有三个,
分别为,,
【典例8】在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.
(1)求抛物线的解析式;
(2)直线AB的函数解析式为 ,点M的坐标为 ,cs∠ABO= ;
连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为 ;
(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;
(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
【答案】【分析】(1)将点A、C的坐标代入抛物线表达式即可求解;
(2)点A(﹣4,0),OB=OA=4,故点B(0,4),即可求出AB的表达式;OP将△AOC的面积分成1:2的两部分,则AP=AC或AC,即可求解;
(3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,即可求解;
(4)分AC是边、AC是对角线两种情况,分别求解即可.
【解答】解:(1)将点A、C的坐标代入抛物线表达式得:,解得,
故直线AB的表达式为:y=x2+2x;
(2)点A(﹣4,0),OB=OA=4,故点B(0,4),
由点A、B的坐标得,直线AB的表达式为:y=x+4;
则∠ABO=45°,故cs∠ABO=;
对于y=x2+2x,函数的对称轴为x=﹣2,故点M(﹣2,﹣2);
OP将△AOC的面积分成1:2的两部分,则AP=AC或AC,
则,即,解得:yP=2或4,
故点P(﹣2,2)或(0,4);
故答案为:y=x+4;(﹣2,﹣2);;(﹣2,2)或(0,4);
(3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,
点A′(4,0),
设直线A′M的表达式为:y=kx+b,则,解得,
故直线A′M的表达式为:y=x﹣,
令x=0,则y=﹣,故点Q(0,﹣);
(4)存在,理由:
设点N(m,n),而点A、C、O的坐标分别为(﹣4,0)、(2,6)、(0,0),
①当AC是边时,
点A向右平移6个单位向上平移6个单位得到点C,同样点O(N)右平移6个单位向上平移6个单位得到点N(O),
即0±6=m,0±6=n,解得:m=n=±6,
故点N(6,6)或(﹣6,﹣6);
②当AC是对角线时,
由中点公式得:﹣4+2=m+0,6+0=n+0,
解得:m=﹣2,n=6,
故点N(﹣2,6);
综上,点N的坐标为(6,6)或(﹣6,﹣6)或(﹣2,6).
【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质、图形的平移、面积的计算等,其中(4),要注意分类求解,避免遗漏.
【典例9】如图1(注:与图2完全相同)所示,抛物线经过B、D两点,与x轴的另一个交点为A,与y轴相交于点C.
(1)求抛物线的解析式.
(2)设抛物线的顶点为M,求四边形ABMC的面积(请在图1中探索)
(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标(请在图2中探索)
【答案】(1);(2);(3)点P的坐标为:或(4,)或(,).
【解析】
【分析】
(1)由图可知点B、点D的坐标,利用待定系数法,即可求出抛物线的解析式;
(2)过点M作ME⊥AB于点E,由二次函数的性质,分别求出点A、C、M的坐标,然后得到OE、BE的长度,再利用切割法求出四边形的面积即可;
(3)由点Q在y轴上,设Q(0,y),由平行四边形的性质,根据题意可分为:①当AB为对角线时;②当BQ2为对角线时;③当AQ3为对角线时;分别求出三种情况的点P的坐标,即可得到答案.
【详解】
解:(1)根据题意,抛物线经过B、D两点,
点D为(,),点B为(3,0),
则,
解得:,
∴抛物线的解析式为;
(2)∵,
∴点M的坐标为(1,2)
令,
解得:,,
∴点A为(,0);
令,则,
∴点C为(0,);
∴OA=1,OC=,
过点M作ME⊥AB于点E,如图:
∴,,,
∴,
∴;
(3)根据题意,点Q在y轴上,则设点Q为(0,y),
∵点P在抛物线上,且以点A、B、P、Q为顶点的四边形是平行四边形,
如图所示,可分为三种情况进行分析:
①AB为对角线时,则为对角线;
由平行四边形的性质,
∴点E为AB和的中点,
∵E为(1,0),
∵点Q1为(0,y),
∴点P1的横坐标为2;
当时,代入,
∴,
∴点;
②当BQ2是对角线时,AP也是对角线,
∵点B(3,0),点Q2(0,y),
∴BQ2中点的横坐标为,
∵点A为(,0),
∴点P2的横坐标为4,
当时,代入,
∴,
∴点P2的坐标为(4,);
③当AQ3为对角线时,BP3也是对角线;
∵点A为(,0),点Q3(0,y),
∴AQ3的中点的横坐标为,
∵点B(3,0),
∴点P3的横坐标为,
当时,代入,
∴,
∴点P3的坐标为(,);
综合上述,点P的坐标为:或(4,)或(,).
【点睛】
本题考查了二次函数的性质,平行四边形的性质,解一元二次方程,以及坐标与图形等知识,解题的关键是熟练掌握二次函数的性质进行解题,注意利用分类讨论和数形结合的思想进行分析.
相关试卷
这是一份类型4题型12二次函数与圆的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型12二次函数与圆的问题教师版doc、题型12二次函数与圆的问题学生版doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份类型4题型11二次函数与正方形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型11二次函数与正方形有关的问题教师版doc、题型11二次函数与正方形有关的问题学生版doc等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份类型4题型10二次函数与矩形有关的问题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型10二次函数与矩形有关的问题教师版doc、题型10二次函数与矩形有关的问题学生版doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。