![难点解析冀教版七年级数学下册第八章整式的乘法难点解析试题(含详细解析)第1页](http://m.enxinlong.com/img-preview/2/3/12767660/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版七年级数学下册第八章整式的乘法难点解析试题(含详细解析)第2页](http://m.enxinlong.com/img-preview/2/3/12767660/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版七年级数学下册第八章整式的乘法难点解析试题(含详细解析)第3页](http://m.enxinlong.com/img-preview/2/3/12767660/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第八章 整式乘法综合与测试练习
展开
这是一份数学七年级下册第八章 整式乘法综合与测试练习,共17页。试卷主要包含了计算的结果是,的计算结果是等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、计算(3x2y)2的结果是( )A.6x2y2 B.9x2y2 C.9x4y2 D.x4y22、若,则代数式的值为( )A.6 B.8 C.12 D.163、下列计算正确的是( )A.a+a=a2 B.a3÷a=a2 C.(a﹣1)2=a2﹣1 D.(2a)3=6a34、计算的结果是( )A. B. C. D.5、下面是某同学在一次测验中的计算摘录,,,,,,其中正确的个数有( )A.1个 B.2个 C.3个 D.4个6、的计算结果是( )A. B. C. D.7、已知am=5,an=2,则a2m+n的值等于( )A.50 B.27 C.12 D.258、数字2500000用科学记数法为( )A.0.25×107 B.2.5×107 C.2.5×106 D.25×1059、下列式子运算结果为2a的是( ).A. B. C. D.10、已知,,c=(0.8)﹣1,则a,b,c的大小关系是( )A.c>b>a B.a>c>b C.a>b>c D.c>a>b第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、若a+b=﹣3,ab=1,则(a+1)(b+1)(a﹣1)(b﹣1)=_____.2、已知3m=a,3n=b,则33m+2n的结果是____.3、古代数学家曾经研究过一元二次方程的几何解法.以方程为例,三国时期的数学家赵爽在其所著的《勾股圆方图注》中记载的方法是:构造如图所示的大正方形ABCD,它由四个全等的矩形加中间小正方形组成,根据面积关系可求得AB的长,从而解得x.根据此法,图中正方形ABCD的面积为________,方程可化为________.4、计算:_____.5、设为正整数,若是完全平方数,则________.三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中.2、化简:(1);(2).3、如图1,有甲、乙、丙三种纸片,其中甲是边长为a的正方形,乙是长为a,宽为b的长方形,丙是边长为b的正方形().(1)如图2,用甲、丙纸片各1张,乙纸片2张,可以紧密拼接成一个大正方形,请根据图形的面积写出一个乘法公式_____________;(2)若要用这三种纸片紧密拼接成一个边长为大正方形,则需要取甲、乙、丙纸片各多少张.4、已知a、b为有理数,且(a+)2=b﹣8,求a﹣b的值.5、数形结合是数学学习中经常使用的数学方法之一,在研究代数问题时,如:学习平方差公式和完全平方公式,我们通过构造几何图形,用面积法可以很直观地推导出公式.以下三个构图都可以用几何方法生成代数结论,请尝试解决问题.(1)构图一,小函同学从边长为的大正方形纸板中挖去一个边长为的小正方形后,将其裁成四个相同的等腰梯形(如图(1)),然后拼成一个平行四边形(如图(2)),那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( ).A. B. C.D.(2)构图二、小云同学在数学课上画了一个腰长为的等腰直角三角形,如图(3),他在该三角形中画了一条平行于一腰的线段,得到一个腰长为的新等腰直角三角形,请你利用这个图形推导出一个关于、的等式. -参考答案-一、单选题1、C【解析】【分析】直接利用积的乘方和幂的乘方运算法则计算得出答案.【详解】解:(3x2y)2=9x4y2.故选:C.【点睛】此题主要考查了积的乘方和幂的乘方运算,正确掌握相关运算法则是解题关键.2、D【解析】【分析】对已知条件变形为:,然后等式两边再同时平方即可求解.【详解】解:由已知条件可知:,上述等式两边平方得到:,整理得到:,故选:D.【点睛】本题考查了等式恒等变形,完全平方公式的求值等,属于基础题,计算过程中细心即可.3、B【解析】【分析】根据合并同类项、完全平方公式、积的乘方、同底数幂的除法进行计算即可.【详解】解:A、a+a=2a,原计算错误,该选项不符合题意;B、a3÷a=a2,正确,该选项符合题意;C、(a﹣1)2=a2-2a+1,原计算错误,该选项不符合题意;D、(2a)3=8a3,原计算错误,该选项不符合题意;故选:B.【点睛】本题考查了合并同类项、完全平方公式、积的乘方、同底数幂的除法,是基础知识要熟练掌握.4、D【解析】【分析】利用单项式除以单项式法则,即可求解.【详解】解:.故选:D【点睛】本题主要考查了单项式除以单项式,熟练掌握单项式除以单项式法则是解题的关键.5、A【解析】【分析】由合并同类项的定义、单项式乘法法则,单项式除法法则,幂的乘方的运算法则计算后再判定即可.【详解】中的两项不是同类项,不能合并,故错误;中的两项不是同类项,不能合并,故错误;,故正确;,故错误;,故错误;当a≠3时,,错误.综上所述,计算正确.故选:错误.【点睛】本题考查了合并同类项的定义、单项式乘法法则,单项式除法法则,幂的乘方的运算法则等.同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.单项式乘(除)单项式,把它们的系数、同底数幂分别向乘(除),对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.幂的乘方,底数不变,指数相乘,即(m,n都是正整数).6、D【解析】【分析】原式化为,根据平方差公式进行求解即可.【详解】解:故选D.【点睛】本题考查了平方差公式的应用.解题的关键与难点在于应用平方差公式.7、A【解析】【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:∵am=5,an=2,∴a2m+n=×an=52×2=50.故选:A.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.8、C【解析】【分析】用科学记数法表示成的形式,其中,,代入可得结果.【详解】解:的绝对值大于表示成的形式,表示成故选C.【点睛】本题考查了科学记数法.解题的关键在于确定的值.9、C【解析】【分析】由同底数幂的乘法可判断A,由合并同类项可判断B,C,由同底数幂的除法可判断D,从而可得答案.【详解】解:故A不符合题意;不能合并,故B不符合题意;故C符合题意;故D不符合题意;故选C【点睛】本题考查的是同底数幂的乘法,合并同类项,同底数幂的除法,掌握“幂的运算与合并同类项”是解本题的关键.10、B【解析】【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简,进而比较大小得出答案.【详解】解:∵a=()﹣2,b=()0=1,c=(0.8)﹣1,∴1,∴a>c>b.故选:B.【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.二、填空题1、-5【解析】【分析】根据多项式乘多项式的乘法法则解决此题.【详解】解:∵a+b=-3,ab=1,∴(a+1)(b+1)(a-1)(b-1)=[(a+1)(b+1)][(a-1)(b-1)]=(ab+a+b+1)(ab-a-b+1)=(1-3+1)×(1+3+1)=-1×5=-5.故答案为:-5.【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则是解决本题的关键.2、a3b2##b2a3【解析】【分析】根据幂的乘方以及同底数幂的乘法解决此题.【详解】解:∵3m=a,3n=b,∴33m+2n=33m•32n=(3m)3•(3n)2=a3b2.故答案为:a3b2.【点睛】本题主要考查幂的乘方以及同底数幂的乘法的逆运算,熟练掌握幂的乘方以及同底数幂的乘法是解决本题的关键.3、 89 【解析】【分析】先求正方形四边边长,用完全平方公式展开两条边长之积,再利用已知条件得出所求正方形面积.第二问则把第一问的最前面和最后面联系起来即可得解.【详解】①正方形边长为x+x+3=2x+3故面积为(2x+3)²=4x²+12x+9=4(x²+3x)+9因为x²+3x=20所以4(x²+3x)+9=80+9=89故答案为89;②由①结合最前面和最后面可得:(2x+3)²=89故答案为(2x+3)²=89.【点睛】本题考查完全平方公式的应用、结论的迁移,掌握这些是本题关键.4、【解析】【分析】利用平方差公式,即可求解.【详解】解:.故答案为:【点睛】本题主要考查了利用平方差公式计算,熟练掌握平方差公式 是解题的关键.5、4或19【解析】【分析】将n2+9n-3转化成一个完全平方数再加一个数,只有这个数为0时,原式是完全平方数,求出n再判断,即可得出答案.【详解】解:①n2+9n-3=n2+2n+7n-3=(n2+2n+1)+(7n-4)=(n+1)2+(7n-4),∵n2+9n-3是完全平方数,∴(n+1)2+(7n-4)是完全平方数,∴7n-4=0,∴n=(不是正整数,不符合题意),②n2+9n-3=n2+4n+5n-3=(n2+4n+4)+(5n-7)=(n+2)2+(5n-7),∵n2+9n-3是完全平方数,∴(n+2)2+(5n-7)是完全平方数,∴5n-7=0,∴n=(不是正整数,不符合题意),③n2+9n-3=n2+6n+3n-3=(n2+6n+9)+(3n-12)=(n+3)2+(3n-12),∵n2+9n-3是完全平方数,∴(n+3)2+(3n-12)是完全平方数,∴3n-12=0,∴n=4,④n2+9n-3=n2+8n+n-3=(n2+8n+16)+(n-19)=(n+4)2+(n-19),∵n2+9n-3是完全平方数,∴(n+4)2+(n-19)是完全平方数,∵n是正整数,∴n=19,⑤n2+9n-3=n2+10n-n-3=(n2+10n+25)+(-n-28)=(n+5)2+(-n-28),∵n为正整数,∴-n-28<0,综上所述,n的值为4或19,故答案为:4或19.【点睛】此题主要考查了完全平方数,配方法,用分类讨论的思想解决问题是解本题的关键.三、解答题1、a2+2b2,,【解析】【分析】首先去括号进而合并同类项,再把已知代入求出答案.【详解】解:=,当时,原式.【点睛】此题主要考查了整式的四则混合运算,熟练掌握混合运算法则是解题关键.2、 (1);(2).【解析】【分析】(1)先去括号,然后合并同类项即可;(2)原式去括号合并即可得到结果.(1)原式=;(2)原式=.【点睛】本题考查了整式的化简,熟练掌握去括号法则与合并同类项法则是解本题的关键.3、(1)(a+b)2=a2+b2+2ab;(2)需要甲纸片4张,乙纸片4张,丙纸片1张;【解析】【分析】(1)用两种方法表示拼成的大正方形的面积,即可得出(a+b)2,a2+b2,ab三者的关系;(2)计算的结果为4a2+4ab+b2,因此需要甲纸片4张,乙纸片4张,丙纸片1张;【详解】解:(1)大正方形的面积可以表示为:(a+b)2,或表示为:a2+b2+2ab;因此有(a+b)2=a2+b2+2ab,故答案为:(a+b)2=a2+b2+2ab; (2)∵=4a2+4ab+b2,∴需要甲纸片4张,乙纸片4张,丙纸片1张;【点睛】本题考查完全平方公式的意义和应用,用不同的方法表示面积是得出等量关系的关键.4、﹣23【解析】【分析】由题意根据完全平方公式和实数的性质列方程组,可得结论.【详解】解:∵(a+)2=b﹣8,∴a2+2a+3=b﹣8,∵a,b是有理数,可得a2+3=b,2a=﹣8,解得:a=﹣4,b=19,∴a﹣b=﹣4﹣19=﹣23.【点睛】本题考查二元一次方程组的解以及实数的运算,弄清实数的性质是解答本题的关键.5、 (1)D(2)【解析】【分析】(1)图(1)中面积为两个正方形的面积差,图(2)中平行四边形底边为a+b,高为a-b,据此得到答案;(2)通过表示图(3)中梯形面积,可推导出等式.(1)解:图(1)中阴影部分面积为:,图(2)的面积为:, 可得等式为;,故选:D;(2)解:用两种方式表示梯形的面积,可得到,也可表示为:,可得等式,即.【点睛】此题考查了平方差公式与几何图形面积关系,掌握简单几何图形面积的计算方法是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试练习,共16页。试卷主要包含了下列运算正确的是,下列各式中,不正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第八章 整式乘法综合与测试同步测试题,共16页。试卷主要包含了下列计算正确的是.,若,则的值为,若的结果中不含项,则的值为,计算正确的结果是等内容,欢迎下载使用。
这是一份2020-2021学年第八章 整式乘法综合与测试课时训练,共17页。试卷主要包含了计算,下列计算正确的是,已知,,c=,已知是完全平方式,则的值为等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)