![精品试题冀教版七年级数学下册第八章整式的乘法单元测试试卷(无超纲带解析)第1页](http://m.enxinlong.com/img-preview/2/3/12767584/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版七年级数学下册第八章整式的乘法单元测试试卷(无超纲带解析)第2页](http://m.enxinlong.com/img-preview/2/3/12767584/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版七年级数学下册第八章整式的乘法单元测试试卷(无超纲带解析)第3页](http://m.enxinlong.com/img-preview/2/3/12767584/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中冀教版第八章 整式乘法综合与测试单元测试同步练习题
展开
这是一份初中冀教版第八章 整式乘法综合与测试单元测试同步练习题,共16页。试卷主要包含了已知,则的值是,电影《攀登者》中有句台词,下列计算正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、若(﹣2x+a)(x﹣1)的结果中不含x的一次项,则a的值为( )A.1 B.﹣1 C.2 D.﹣22、数字2500000用科学记数法为( )A.0.25×107 B.2.5×107 C.2.5×106 D.25×1053、人类的遗传物质是DNA,其中最短的22号染色体含 30000000个核苷酸,30000000用科学记数法表示为( )A.3×106 B.3×107 C.3×108 D.0.3×1084、已知,则的值是( )A.7 B.8 C.9 D.105、电影《攀登者》中有句台词:我们自己的山,自己要登上去,让全世界看到中国人.“地球之巅”正在人类努力和科技进步下逐渐揭开神秘面纱.2020年12月8日,中尼两国领导人共同宣布珠穆朗玛峰最新高程——8848.86米.这也意味着,15年前测量的8844.43米珠峰“身高”成为历史.则8848.86用科学记数法表示是( )A. B. C. D.6、福建省教育发展基金会通过腾讯公益平台发起“关爱重度残疾儿童”公益募捐活动.首轮网上公益活动募捐计划93万元资金,重点扶持原23个省级扶贫开发工作重点县,助力重度残疾儿童少年实施送教上门工作,计划惠及860名重度残疾儿童.将数据93万用科学记数法表示为( ).A. B. C. D.7、若(mx+8)(2﹣3x)中不含x的一次项,则m的值为( )A.0 B.3 C.12 D.168、我国自主研发的“复兴号”CR300AF型动车于12月21日在贵阳动车所内运行,其最高运行速度为250000m/h,其中数据250000用科学记数法表示为( )A.25×104 B.2.5×104 C.2.5×105 D.2.5×1069、下列计算正确的是( )A.a4+a3=a7 B.a4•a3=a7 C.a4÷a3=1 D.(﹣2a3)4=8a1210、中国某公司研发的智能分拣机器人可以实现快速分拣,每天工作8小时可以分拣大约128000件包裹.128000用科学记数法表示为是( )A. B. C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、若5m=3,5n=4,则5m﹣n的值是___________________.2、人类进入5G时代,科技竞争日趋激烈.据报道,我国已经能大面积生产14纳米的芯片,14纳米即为0.00000014米,将其用科学记数法表示为______米.3、2021年1月份国家统计局发布数据显示,初步核算,2020年全年国内生产总值为1015986亿元.请将数字“1015986”保留3个有效数字并用科学记数法表示为______.4、为做好新冠疫情常态化防控,更好保护人民群众身体健康,上海市开展新冠疫苗接种工作.截至3月底,已累计接种新冠疫苗2600000剂次,用科学记数法可表示________________剂次5、如图,两个正方形的边长分别为a,b.若a+b=5,ab=5,则图中阴影部分的面积为_____.三、解答题(5小题,每小题10分,共计50分)1、阅读理解:已知a+b=﹣4,ab=3,求a2+b2的值.解:∵a+b=﹣4,∴(a+b)2=(﹣4)2.即a2+2ab+b2=16.∵ab=3,∴a2+b2=10.参考上述过程解答:(1)已知a﹣b=﹣3,ab=﹣2.求式子(a﹣b)(a2+b2)的值;(2)若m﹣n﹣p=﹣10,(m﹣p)n=﹣12,求式子(m﹣p)2+n2的值.2、计算:(2a﹣3b)(a+5b).3、给出如下定义:我们把有序实数对(a,b,c)叫做关于x的二次多项式ax2+bx+c的特征系数对,把关于x的二次多项式ax2+bx+c叫做有序实数对(a,b,c)的特征多项式.(1)关于x的二次多项式3x2+2x-1的特征系数对为________;(2)求有序实数对(1,4,4)的特征多项式与有序实数对(1,-4,4)的特征多项式的乘积;(3)若有序实数对(p,q,-1)的特征多项式与有序实数对(m,n,-2)的特征多项式的乘积的结果为2x4+x3-10x2-x+2,直接写出(4p-2q-1)(2m-n-1)的值为________.4、阅读以下材料:苏格兰数学家纳皮尔(J.Npler,1550-1617年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若(且),那么x叫做以a为底N的对数,记作,比如指数式可以转化为对数式,对数式可以转化为指数式.我们根据对数的定义可得到对数的一个性质:,理由如下:设,,则,,∴,由对数的定义得.又∵,∴.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:① ,② ,③ ;(2)求证:;(3)拓展运用:计算.5、先化简,再求值:,其中. -参考答案-一、单选题1、D【解析】【分析】根据多项式乘多项式的运算法则进行化简,然后令含x的一次项系数为零即可求出答案.【详解】解:(﹣2x+a)(x﹣1)=﹣2 +(a+2)x﹣a,∴a+2=0,∴a=﹣2,故选:D.【点睛】本题考查了整式的乘法中的不含某项的计算,正确理解题意是解题的关键.2、C【解析】【分析】用科学记数法表示成的形式,其中,,代入可得结果.【详解】解:的绝对值大于表示成的形式,表示成故选C.【点睛】本题考查了科学记数法.解题的关键在于确定的值.3、B【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:30000000=3×107.故选:B.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4、C【解析】【分析】把化为,代入,整理后即可求解.【详解】解:∵,∴====,故答选:C【点睛】此题考查了代数式求值,掌握平方差公式是解答此题的关键.5、B【解析】【分析】对于一个绝对值较大的数,用科学记数法写成a×10n的形式,其中1≤|a|<10,n是比原整数位数少1的数.【详解】解:8848.86=,故选B.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、A【解析】【分析】科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:93万=930000=9.3×105,故选:A.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、C【解析】【分析】先计算多项式乘以多项式得到结果为,结合不含的一次项列方程,从而可得答案.【详解】解:(mx+8)(2﹣3x) (mx+8)(2﹣3x)中不含x的一次项, 解得: 故选C【点睛】本题考查的是多项式乘法中不含某项,掌握“多项式乘法中不含某项即某项的系数为0”是解题的关键.8、C【解析】【分析】用科学记数法表示绝对值大于1的数形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:250000=2.5×105,故选:C.【点睛】本题考查科学记数法的表示方法.用科学记数法表示绝对值大于1的数的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9、B【解析】【分析】根据合并同类项法则、同底数幂乘法法则、同底数幂除法法则及积的乘方法则依次计算判断.【详解】解:A、a4与a3不是同类项,不能合并,故该项不符合题意;B、a4•a3=a7,故该项符合题意;C、a4÷a3=a,故该项不符合题意;D、(﹣2a3)4=16a12,故该项不符合题意;故选:B.【点睛】此题考查了整式的计算法则,熟记合并同类项法则、同底数幂乘法法则、同底数幂除法法则及积的乘方法则是解题的关键.10、C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.据此解答即可.【详解】解:128000=1.28×105,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.二、填空题1、【解析】【分析】根据同底数幂除法的计算方法进行计算即可.【详解】解:因为,,所以,故答案为:.【点睛】本题考查同底数幂的除法,解题的关键是掌握“同底数幂相除,度数不变,指数相减”.2、【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000014=1.4×10−8,故答案为:1.4×10−8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、【解析】【分析】用科学记数法保留有效数字,要在标准形式中的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.【详解】解:.故答案是:.【点睛】本题主要考查了科学记数法以及有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.4、【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:2600000=2.6×106故答案为:2.6×106.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、2.5####【解析】【分析】先利用阴影部分的面积等于大的正方形的面积的一半减去三个三角形的面积得到阴影面积为:,再利用完全平方公式的变形求解面积即可.【详解】解: 两个正方形的边长分别为a,b, a+b=5,ab=5, 故答案为:【点睛】本题考查的是完全平方公式在几何图形中的应用,利用完全平方公式的变形求解代数式的值,掌握“”是解本题的关键.三、解答题1、 (1)(2)2、2a2+7ab−15b2【解析】【分析】根据多项式乘多项式的运算法则展开,再合并同类项即可得.【详解】解:原式=2a2+10ab−3ab−15b2=2a2+7ab−15b2.【点睛】本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.3、 (1)(3,2,-1)(2)(3)-6【解析】【分析】(1)根据特征系数对的定义即可解答;(2)根据特征多项式的定义先写出多项式,然后再根据多项式乘多项式进行计算即可;(3)根据特征多项式的定义先写出多项式,然后再令x=-2即可得出答案.(1)解:关于x的二次多项式3x2+2x-1的特征系数对为 (3,2,-1),故答案为:(3,2,-1);(2)解:∵有序实数对(1,4,4)的特征多项式为:x2+4x+4,有序实数对(1,-4,4)的特征多项式为:x2-4x+4,∴(x2+4x+4)(x2-4x+4)=x4-4x3+4x2+4x3-16x2+16x+4x2-16x+16=x4-8x2+16;(3)解:根据题意得(px2+qx-1)(mx2+nx-2)=2x4+x3-10x2-x+2,令x=-2,则(4p-2q-1)(4m-2n-2)=2×16-8-10×4+2+2,∴(4p-2q-1)(4m-2n-2)=32-8-40+2+2,∴(4p-2q-1)(4m-2n-2)=-12,∴(4p-2q-1)(2m-n-1)=-6,故答案为:-6.【点睛】本题考查了多项式乘多项式,新定义问题,给x赋予特殊值-2是解题的关键.4、 (1)①6;②3;③0(2)见解析(3)2【解析】【分析】(1)利用对数的定义,即可求解;(2)设,,则,,可得,从而得到,即可求证;(3)根据对数的定义,代入即可求解.(1)解:①∵ ,∴;②∵ ∴;③∵ ,∴;(2)设,,则,,∴,由对数的定义得.又∵∴;(3) .【点睛】本题主要考查了幂的运算,同底数幂相除,明确题意,理解对数的定义是解题的关键.5、﹣xy﹣y2,﹣8【解析】【分析】根据平方差公式,完全平方公式,多项式乘以多项式运算法则化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【详解】解:,=,=,=﹣xy﹣y2,当时,原式=(﹣3)2=﹣8.【点睛】本题考查整式的混合运算-化简求值,解答本题的关键是熟记乘法公式整式的化简求值的方法.
相关试卷
这是一份冀教版七年级下册第八章 整式乘法综合与测试一课一练,共18页。试卷主要包含了下列计算正确的是,下列运算正确的是,计算得,若的结果中不含项,则的值为等内容,欢迎下载使用。
这是一份数学七年级下册第八章 整式乘法综合与测试课时训练,共18页。试卷主要包含了已知,,c=,计算得,计算的结果,若的结果中不含项,则的值为等内容,欢迎下载使用。
这是一份冀教版七年级下册第八章 整式乘法综合与测试单元测试课时训练,共16页。试卷主要包含了观察下列各式,下列计算正确的是,若,则的值是,下列运算正确的是等内容,欢迎下载使用。