开学活动
搜索
    上传资料 赚现金

    2021-2022学年度冀教版八年级数学下册第二十二章四边形必考点解析练习题(含详解)

    2021-2022学年度冀教版八年级数学下册第二十二章四边形必考点解析练习题(含详解)第1页
    2021-2022学年度冀教版八年级数学下册第二十二章四边形必考点解析练习题(含详解)第2页
    2021-2022学年度冀教版八年级数学下册第二十二章四边形必考点解析练习题(含详解)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试课后复习题

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试课后复习题,共32页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于( )
    A.1B.2C.3D.4
    2、小明想判断家里的门框是否为矩形,他应该( )
    A.测量三个角是否都是直角B.测量对角线是否互相平分
    C.测量两组对边是否分别相等D.测量一组对角是否是直角
    3、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是( )
    A.线段的长逐渐增大B.线段的长逐渐减少
    C.线段的长不变D.线段的长先增大后变小
    4、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为( )
    A.(1,1)B.(﹣1,﹣1)C.(-1,1)D.(1,﹣1)
    5、下列多边形中,内角和与外角和相等的是( )
    A.B.C.D.
    6、如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为( )
    A.B.8C.D.
    7、平面上六个点A,B,C,D,E,F,构成如图所示的图形,则∠A+∠B+∠C+∠D+∠E+∠F度数是( )
    A.135度B.180度C.200度D.360度
    8、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积( )
    A.先变大后变小B.先变小后变大C.一直变大D.保持不变
    9、下列命题中是真命题的是( ).A.有一组邻边相等的平行四边形是菱形B.对角线互相垂直且相等的四边形是菱形
    C.对角线相等的四边形是矩形D.有一个角为直角的四边形是矩形
    10、如图,正方形的边长为,对角线、相交于点.为上的一点,且,连接并延长交于点.过点作于点,交于点,则的长为( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平行四边形ABCD中,对角线AC长为8cm,,,则它的面积为______cm2.
    2、如图,在平行四边形ABCD中,
    (1)若∠A=130°,则∠B=______ 、∠C=______ 、∠D=______.
    (2)若∠A+ ∠C= 200°,则∠A=______ 、∠B=______;
    (3)若∠A:∠B= 5:4,则∠C=______ 、∠D=______.
    3、如图,四边形ABCD是平行四边形,BE平分∠ABC,与AD交于点E,BC=5,DE=2,则AB的长为 ___.
    4、如图,已知AD为的高,,以AB为底边作等腰,,交AC于F,连ED,EC,有以下结论:①;②;③;④;其中正确的是___.
    5、平行四边形的判定方法:
    (1)两组对边分别______的四边形是平行四边形
    (2)两组对边分别______的四边形是平行四边形
    (3)两组对角分别______的四边形是平行四边形
    (4)对角线______的四边形是平行四边形
    (5)一组对边______的四边形是平行四边形
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
    (1)试用含t的式子表示AE、AD、DF的长;
    (2)如图①,连接EF,求证四边形AEFD是平行四边形;
    (3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
    2、如图,是一张放在平面直角坐标系中的长方形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,,在边上取一点,将纸片沿翻折,使点落在边上的点处.
    (1)直接写出点的坐标____________________;
    (2)求、两点的坐标.
    3、已知:△ABC,AD为BC边上的中线,点M为AD上一动点(不与点A重合),过点M作ME∥AB,过点C作CE∥AD,连接AE.
    (1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形
    (2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;
    (3)如图3,延长BM交AC于点N,若点M为AD的中点,求的值.
    4、已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,点C在线段OA的延长线上,且AC=OB.
    (1)如图1,CDOB,CD=OA,连接AD,BD.
    ① ;
    ②若OA=2,OB=3,则BD= ;
    (2)如图2,在射线OM上截取线段BE,使BE=OA,连接CE,当点B在射线OM上运动时,求∠ABO和∠OCE的数量关系;
    (3)如图3,当E为OB中点时,平面内一动点F满足FA=OA,作等腰直角三角形FQC,且FQ=FC,当线段AQ取得最大值时,直接写出的值.
    5、已知:线段m.
    求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.
    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据平行四边形及平行线的性质可得,再由角平分线及等量代换得出,利用等角对等边可得,结合图形即可得出线段长度.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴,
    ∴,
    ∵AE平分,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    故选:B.
    【点睛】
    题目主要考查 平行四边形及平行线的性质,利用角平分线计算,等角对等边等,理解题意,熟练运用平行四边形的性质是解题关键.
    2、A
    【解析】
    【分析】
    根据矩形的判定方法解题.
    【详解】
    解:A、三个角都是直角的四边形是矩形,
    选项A符合题意;
    B、对角线互相平分的四边形是平行四边形,
    选项B不符合题意,
    C、两组对边分别相等的四边形是平行四边形,
    选项C不符合题意;
    D、一组对角是直角的四边形不是矩形,
    选项D不符合题意;
    故选:A.
    【点睛】
    本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.
    3、C
    【解析】
    【分析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.
    【详解】
    解:连接.
    、分别是、的中点,
    为的中位线,
    ,为定值.
    线段的长不改变.
    故选:.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    4、B
    【解析】
    【分析】
    分别过点和点作轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标
    【详解】
    如图,分别过点和点作轴于点,作轴于点,
    ∴,
    ∵四边形为菱形,
    ∴点为的中点,
    ∴点为的中点,
    ∴,,
    ∵,
    ∴;
    由题意知菱形绕点逆时针旋转度数为:,
    ∴菱形绕点逆时针旋转周,
    ∴点绕点逆时针旋转周,
    ∵,
    ∴旋转60秒时点的坐标为.
    故选B
    【点睛】
    根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.
    5、B
    【解析】
    【分析】
    根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.
    【详解】
    解:设所求多边形的边数为n,根据题意得:
    (n-2)•180°=360°,
    解得n=4.
    故选:B.
    【点睛】
    本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.
    6、A
    【解析】
    【分析】
    由菱形的性质得出OA=OC=5,OB=OD=12,AC⊥BD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.
    【详解】
    解:连接OE,
    ∵四边形ABCD是菱形,
    ∴OA=OC=5,OB=OD=12,AC⊥BD,
    在Rt△AOD中,AD==13,
    又∵E是边AD的中点,
    ∴OE=AD=×13=6.5,
    ∵EF⊥BD,EG⊥AC,AC⊥BD,
    ∴∠EFO=90°,∠EGO=90°,∠GOF=90°,
    ∴四边形EFOG为矩形,
    ∴FG=OE=6.5.
    故选:A.
    【点睛】
    本题考查了菱形的性质、矩形的判定与性质、直角三角形斜边上中线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.
    7、D
    【解析】
    【分析】
    根据三角形外角性质及四边形内角和求解即可.
    【详解】
    解:如下图所示:
    根据三角形的外角性质得,∠1=∠C+∠E,∠2=∠B+∠D,
    ∵∠1+∠2+∠A+∠F=360°,
    ∴∠A+∠B+∠C+∠D+∠E+∠F=360°,
    故选:D.
    【点睛】
    此题考查了三角形的外角性质,熟记三角形外角性质及四边形内角和为360°是解题的关键.
    8、D
    【解析】
    【分析】
    连接AE,根据,推出,由此得到答案.
    【详解】
    解:连接AE,
    ∵,
    ∴,
    故选:D.

    【点睛】
    此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE是解题的关键.
    9、A
    【解析】
    【分析】
    根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.
    【详解】
    解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;
    B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;
    C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;
    D、有三个角是直角的四边形是矩形,所以该选项不正确.
    故选:A.
    【点睛】
    本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.
    10、C
    【解析】
    【分析】
    根据正方形的性质以及已知条件求得的长,进而证明,即可求得,勾股定理即可求得的长
    【详解】
    解:如图,设的交点为,
    四边形是正方形
    ,,
    ,,
    ,,
    在与中
    在中,
    故选C
    【点睛】
    本题考查了正方形的性质,勾股定理,全等三角形的性质与判定,掌握正方形的性质是解题的关键.
    二、填空题
    1、20
    【解析】
    【分析】
    根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.
    【详解】
    解:如图,过B作BE⊥AC于E.
    在直角三角形ABE中,
    ∠BAC=30°,AB=5,
    ∴BE=AB=,
    S△ABC=AC•BE=10,
    ∴S▱ABCD=2S△ABC=20(cm2).
    故答案为:20.
    【点睛】
    本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.
    2、 50° 130° 50° 100° 80° 100° 80°
    【解析】

    3、3
    【解析】
    【分析】
    根据平行四边形的性质可得,,结合图形,利用线段间的数量关系可得,由平行线及角平分线可得,,得出,根据等角对等边即可得出结果.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴,,
    ∵,
    ∴,
    ∵,BE平分,
    ∴,,
    ∴,
    ∴,
    故答案为:3.
    【点睛】
    题目主要考查平行四边形的性质,利用角平分线计算及平行线的性质,等角对等边求边长等,理解题意,结合图形,综合运用这些知识点是解题关键.
    4、①③
    【解析】
    【分析】
    只要证明,,是的中位线即可一一判断;
    【详解】
    解:如图延长交于,交于.设交于.
    ,,

    ,,
    ,故①正确,
    ,,



    不垂直,故②错误,


    ,,


    是等腰直角三角形,平分,




    ,故③正确,




    ,故④正确.
    故答案是:①③.
    【点睛】
    本题考查等腰直角三角形的性质和判定、全等三角形的判定和性质、三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.
    5、 平行 相等 相等 互相平分 平行且相等
    【解析】

    三、解答题
    1、 (1)AE=t,AD=12﹣2t,DF=t
    (2)见解析
    (3)3,理由见解析
    【解析】
    【分析】
    (1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
    (2)根据对边平行且相等的四边形是平行四边形证明;
    (3)根据矩形的定义列出方程,解方程即可.
    (1)
    解:由题意得,AE=t,CD=2t,
    则AD=AC﹣CD=12﹣2t,
    ∵DF⊥BC,∠C=30°,
    ∴DF=CD=t;
    (2)
    解:∵∠ABC=90°,DF⊥BC,
    ∴,
    ∵AE=t,DF=t,
    ∴AE=DF,
    ∴四边形AEFD是平行四边形;
    (3)
    解:当t=3时,四边形EBFD是矩形,
    理由如下:∵∠ABC=90°,∠C=30°,
    ∴AB=AC=6cm,
    ∵,
    ∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
    解得,t=3,
    ∵∠ABC=90°,
    ∴四边形EBFD是矩形,
    ∴t=3时,四边形EBFD是矩形.
    【点睛】
    此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.
    2、 (1)(10,8)
    (2)D(0,5),E(4,8)
    【解析】
    【分析】
    (1)根据,,可得点的坐标;
    (2)根据折叠的性质,可得AE=AO,OD=ED,根据勾股定理,可得EB的长,根据线段的和差,可得CE的长,可得E点坐标;再根据勾股定理,可得OD的长,可得D点坐标;
    (1)
    解:∵,,
    ∴点的坐标(10,8),
    故答案为:(10,8);
    (2)
    解:依题意可知,折痕AD是四边形OAED的对称轴,
    在Rt△ABE中,AE=AO=10,AB=OC=8,
    由勾股定理,得BE= =6,
    CE=BC-BE=10-6=4,E(4,8).
    在Rt△DCE中,由勾股定理,得DC2+CE2=DE2,
    又∵DE=OD,CD=8-OD,
    (8-OD)2+42=OD2,
    解得OD=5,D(0,5).
    所以D(0,5),E(4,8);
    【点睛】
    本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
    3、 (1)①见解析;②见解析
    (2)是,见解析
    (3)
    【解析】
    【分析】
    (1)①根据DE∥AB,得出∠EDC=∠ABM,根据CE∥AM,∠ECD=∠ADB,根据AM是△ABC的中线,且D与M重合,得出BD=DC,再证△ABD≌△EDC(ASA)即可;
    ②由①得△ABD≌△EDC,得出AB=ED,根据AB∥ED,即可得出结论.
    (2)如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证△BMD≌△MFL(AAS),再证△ABM≌△EMF(ASA),可证四边形ABME是平行四边形;
    (3)过点D作DG∥BN交AC于点G,根据M为AD的中点,DG∥MN,得出MN为三角形中位线MN=DG,根据D为BC的中点,得出DG=BN,可得MN=BN,可求即可.
    (1)
    证明:①∵DE∥AB,
    ∴∠EDC=∠ABM,
    ∵CE∥AM,
    ∴∠ECD=∠ADB,
    ∵AM是△ABC的中线,且D与M重合,
    ∴BD=DC,
    在△ABD与△EDC中,

    ∴△ABD≌△EDC(ASA),
    即△ABM≌△EMC;
    ②由①得△ABD≌△EDC,
    ∴AB=ED,
    ∵AB∥ED,
    ∴四边形ABDE是平行四边形;
    (2)
    成立.理由如下:
    如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,
    ∵AD∥EC,ML∥DC,
    ∴四边形MDCL为平行四边形,
    ∴ML=DC=BD,
    ∵ML∥DC,
    ∴∠FML=∠MBD,
    ∵AD∥EC,
    ∴∠BMD=∠MFL,∠AMB=∠EFM,
    在△BMD和△MFL中
    ∠MBD=∠FML∠BMD=∠MFLBD=ML,
    ∴△BMD≌△MFL(AAS),
    ∴BM=MF ,
    ∵AB∥ME,
    ∴∠ABM=∠EMF,
    在△ABM和△EMF中,
    ∴△ABM≌△EMF(ASA),
    ∴AB=EM,
    ∵AB∥EM,
    ∴四边形ABME是平行四边形;
    (3)
    解:过点D作DG∥BN交AC于点G,
    ∵M为AD的中点,DG∥MN,
    ∴MN=DG,
    ∵D为BC的中点,
    ∴DG=BN,
    ∴MN=BN,
    ∴,
    由(2)知四边形ABME为平行四边形,
    ∴BM=AE,
    ∴.
    【点睛】
    本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键.
    4、 (1)△DCA;
    (2)∠ABO+∠OCE=45°,理由见解析
    (3)
    【解析】
    【分析】
    (1)①由平行线的性质可得∠ACD=∠BOA=90°,再由OB=CA,OA=CD,即可利用SAS证明△AOB≌△DCA;②过点D作DR⊥BO交BO延长线于R,由①可知△AOB≌△DCA,得到CD=OA=2,AC=OB=3,再由OC⊥OB,DR⊥OB,CD∥OB,得到DR=OC=OA+AC=5(平行线间距离相等),同理可得OR=CD=3,即可利用勾股定理得到;
    (2)如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,先证明△AOB≌△WCA得到AB=AW,∠ABO=∠WAC,然后推出∠ABW=∠AWB=45°,证明四边形BECW是平行四边形,得到BW∥CE,则∠WJC=∠BWA=45°,由三角形外角的性质得到∠WJC=∠WAC+∠JCA,则∠ABO+∠OCE=45°;
    (3)如图3-1所示,连接AF,则,如图3-2所示,当A、F、Q三点共线时,AQ有最大值,由此求解即可.
    (1)
    解:①∵CD∥OB,
    ∴∠ACD=∠BOA=90°,
    又∵OB=CA,OA=CD,
    ∴△AOB≌△DCA(SAS);
    故答案为:△DCA;
    ②如图所示,过点D作DR⊥BO交BO延长线于R,
    由①可知△AOB≌△DCA,
    ∴CD=OA=2,AC=OB=3,
    ∵OC⊥OB,DR⊥OB,CD∥OB,
    ∴DR=OC=OA+AC=5(平行线间距离相等),
    同理可得OR=CD=3,
    ∴BR=OB+OR=5,
    ∴;
    故答案为:;
    (2)
    解:∠ABO+∠OCE=45°,理由如下:
    如图所示,过点C作CW⊥AC,使得CW=OA,连接AW,BW,
    在△AOB和△WCA中,

    ∴△AOB≌△WCA(SAS),
    ∴AB=AW,∠ABO=∠WAC,
    ∵∠AOB=90°,
    ∴∠ABO+∠BAO=90°,
    ∴∠BAO+∠WAC=90°,
    ∴∠BAW=90°,
    又∵AB=AW,
    ∴∠ABW=∠AWB=45°,
    ∵BE⊥OC,CW⊥OC,
    ∴BE∥CW,
    又∵BE=OA=CW,
    ∴四边形BECW是平行四边形,
    ∴BW∥CE,
    ∴∠WJC=∠BWA=45°,
    ∵∠WJC=∠WAC+∠JCA,
    ∴∠ABO+∠OCE=45°;
    (3)
    解:如图3-1所示,连接AF,
    ∴,
    ∴如图3-2所示,当A、F、Q三点共线时,AQ有最大值,
    ∵E是OB的中点,BE=OA,
    ∴BE=OE=OA,
    ∴OB=AC=2OA,
    ∵△CFQ是等腰直角三角形,CF=QF,
    ∴∠CFQ=∠CFA=90°,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题主要考查了全等三角形的性质与判定,勾股定理,平行四边形的性质与判定,平行线的性质与判定等等,熟知相关知识是解题的关键.
    5、见详解
    【解析】
    【分析】
    先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.
    【详解】
    解:先作m的垂直平分线,取m的一半为AB,
    以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,
    过A作BC的平行线,与过C作AB的平行线交于D,
    则四边形ABCD为所求作矩形;

    ∵AD∥BC,CD∥AB,
    ∴四边形ABCD为平行四边形,
    ∵BC⊥AB,
    ∴∠ABC=90°,
    ∴四边形ABCD为矩形,
    ∵AB=,AC=m,
    ∴矩形的宽与对角线满足条件,
    ∴四边形ABCD为所求作矩形.
    【点睛】
    本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.

    相关试卷

    2021学年第二十二章 四边形综合与测试巩固练习:

    这是一份2021学年第二十二章 四边形综合与测试巩固练习,共35页。试卷主要包含了下列命题是真命题的有个.等内容,欢迎下载使用。

    数学八年级下册第二十二章 四边形综合与测试测试题:

    这是一份数学八年级下册第二十二章 四边形综合与测试测试题,共25页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。

    2021学年第二十二章 四边形综合与测试课后测评:

    这是一份2021学年第二十二章 四边形综合与测试课后测评,共33页。试卷主要包含了如图,在中,DE平分,,则等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map