搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析冀教版八年级数学下册第二十二章四边形专题测评试卷(无超纲带解析)

    2022年必考点解析冀教版八年级数学下册第二十二章四边形专题测评试卷(无超纲带解析)第1页
    2022年必考点解析冀教版八年级数学下册第二十二章四边形专题测评试卷(无超纲带解析)第2页
    2022年必考点解析冀教版八年级数学下册第二十二章四边形专题测评试卷(无超纲带解析)第3页
    还剩23页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第二十二章 四边形综合与测试精品当堂检测题

    展开

    这是一份数学八年级下册第二十二章 四边形综合与测试精品当堂检测题,共26页。试卷主要包含了如图,在中,DE平分,,则等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则( )
    A.8B.10C.12D.14
    2、若菱形的周长为8,高为2,则菱形的面积为( )
    A.2B.4C.8D.16
    3、如图,在给定的正方形中,点从点出发,沿边方向向终点运动, 交于点,以,为邻边构造平行四边形,连接,则的度数的变化情况是( )
    A.一直减小B.一直减小后增大C.一直不变D.先增大后减小
    4、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )
    A.1B.C.D.2
    5、如图,在中,,于E,DE交AC于点F,M为AF的中点,连接DM,若,则的大小为( ).
    A.112°B.108°C.104°D.98°
    6、将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是( )
    A.矩形B.菱形C.正方形D.梯形
    7、如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为( )
    A.8B.10C.16D.20
    8、如图,在中,DE平分,,则( )
    A.30°B.45°C.60°D.80°
    9、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于( )
    A.2B.C.D.
    10、下列命题不正确的是( )
    A.三边对应相等的两三角形全等
    B.若,则
    C.有一组对边平行、另一组对边相等的四边形是平行四边形
    D.的三边为a、b、c,若,则是直角三角形.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图①,小刚沿菱形纸片ABCD各边中点的连线裁剪得到四边形纸片EFGH,再将纸片EFGH按图②所示的方式分别沿MN、PQ折叠,当PNEF时,若阴影部分的周长之和为16,△AEH,△CFG的面积之和为12,则菱形纸片ABCD的一条对角线BD的长为_____.
    2、如图所示,是长方形地面,长,宽,中间竖有一堵砖墙高.一只蚂蚱从点爬到点,它必须翻过中间那堵墙,则它至少要走______的路程.
    3、已知一个多边形的内角和为,则这个多边形是________边形.
    4、如图,在平行四边形中,是对角线,,点是的中点,平分,于点,连接.已知,,则的长为_______.
    5、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交于点E.AB=6cm,BC=8cm.
    (1)求证AE=EC;
    (2)求阴影部分的面积.
    2、已知:如图,在▱ABCD中,AE⊥BC,,点E,F分别为垂足.
    (1)求证:△ABE≌△CDF;
    (2)求证:四边形AECF是矩形.
    3、已知:线段m.
    求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.
    4、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.
    5、如图,在中,,,E、F分别为AB、CD边上两点,FB平分.
    (1)如图1,若,,求CD的长;
    (2)如图2,若G为EF上一点,且,求证:.
    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    根据折叠和矩形的性质,可得∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,从而得到∠BDE=∠DBE,进而得到BE=DE,再由的面积是22.5,可得,然后根据勾股定理,即可求解.
    【详解】
    解:根据题意得: ∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,
    ∴∠BDE=∠CBD,
    ∴∠BDE=∠DBE,
    ∴BE=DE,
    ∵的面积是22.5,,
    ∴ ,解得: ,
    ∴,
    在 中,由勾股定理得:

    ∴ .
    故选:C
    【点睛】
    本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.
    2、B
    【解析】
    【分析】
    根据周长求出边长,利用菱形的面积公式即可求解.
    【详解】
    ∵菱形的周长为8,
    ∴边长=2,
    ∴菱形的面积=2×2=4,
    故选:B.
    【点睛】
    此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.
    3、A
    【解析】
    【分析】
    根据题意,作交的延长线于,证明是的角平分线即可解决问题.
    【详解】
    解:作交的延长线于,
    ∵四边形 是正方形,
    ∴,

    ∵,
    ∴,,
    ∴,
    ∴,
    ∴,
    ∵四边形是平行四边形,
    ∴,,
    ∵, ,
    ∴,
    ∵,.
    ∴,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴是的角平分线,
    ∴点的运动轨迹是的角平分线,
    ∵,
    由图可知,点P从点D开始运动,所以一直减小,
    故选:A .
    【点睛】
    本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    4、D
    【解析】
    【分析】
    由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB∥CD,∠A=90°,
    ∴∠EFD=∠BEF=60°,
    ∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,
    ∴∠BEF=∠FEB'=60°,BE=B'E,
    ∴∠AEB'=180°-∠BEF-∠FEB'=60°,
    ∴B'E=2AE,
    设BE=x,则B'E=x,AE=3-x,
    ∴2(3-x)=x,
    解得x=2.
    故选:D.
    【点睛】
    本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.
    5、C
    【解析】
    【分析】
    根据平行四边形及垂直的性质可得为直角三角形,再由直角三角形中斜边上的中线等于斜边的一半可得,由等边对等角及三角形外角的性质得出,根据三角形内角和定理即可得出.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴,
    ∵,
    ∴,
    ∴为直角三角形,
    ∵M为AF的中点,
    ∴,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    故选:C.
    【点睛】
    题目主要考查平行四边形的性质,直角三角形中斜边上的中线等于斜边的一半,等边对等角及三角形外角的性质和三角形内角和定理,理解题意,综合运用这些知识点是解题关键.
    6、B
    【解析】
    【分析】
    根据操作过程可还原展开后的纸片形状,并判断其属于什么图形.
    【详解】
    展得到的图形如上图,
    由操作过程可知:AB=CD,BC=AD,
    ∴四边形ABCD是平行四边形,
    ∵AC⊥BD,
    ∴四边形ABCD为菱形,
    故选:B.
    【点睛】
    本题考查平行四边形的判定,和菱形的判定,拥有良好的空间想象能力是解决本题的关键.
    7、C
    【解析】
    【分析】
    根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的周长.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴OA=OC,AB=CD,AD=BC,
    ∵OE⊥AC,
    ∴OE是线段AC的垂直平分线,
    ∴AE=CE,
    ∵△CDE的周长为8,
    ∴CE+DE+CD=8,即AD+CD =8,
    ∴平行四边形ABCD的周长为2(AD+CD)=16.
    故选:C.
    【点睛】
    本题考查了平行四边形的性质、线段垂直平分线的判定和性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.
    8、C
    【解析】
    【分析】
    根据平行四边形的性质得,故,由DE平分得,即可计算.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴,
    ∴,
    ∵DE平分,
    ∴,
    ∴.
    故选:C.
    【点睛】
    本题考查平行四边形的性质,平行线的性质以及角平分线的定义,掌握平行四边形的性质是解题的关键.
    9、B
    【解析】
    【分析】
    先判断重叠部分的形状,然后设DD'=x,进而表示D'C等相关的线段,最后通过重叠部分的面积列出方程求出x的值即可得到答案.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴△ABD和△BCD是等腰直角三角形,
    如图,记A'D'与BD的交点为点E,B'D'与BC的交点为F,
    由平移的性质得,△DD'E和△D'CF为等腰直角三角形,
    ∴重叠部分的四边形D'EBF为平行四边形,
    设DD'=x,则D'C=6-x,D'E=x,
    ∴S▱D'EBF=D'E•D'C=(6-x)x=4,
    解得:x=3+或x=3-,
    故选:B.
    【点睛】
    本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.
    10、C
    【解析】
    【分析】
    根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.
    【详解】
    解:A、三边对应相等的两三角形全等,此命题正确,不符题意;
    B、若,则,此命题正确,不符题意;
    C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;
    D、的三边为、、,若,即,则是直角三角形,此命题正确,不符题意;
    故选:C.
    【点睛】
    本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.
    二、填空题
    1、12
    【解析】
    【分析】
    证出EH是△ABD的中位线,得出BD=2EH=4HN,由题意可以设AN=PC=x,EN=HN=PF=PG=y.构建方程组求出x,y即可解决问题.
    【详解】
    解:连接BD,如图所示:
    ∵四边形ABCD是菱形,
    ∴AB=AD,AC与BD垂直平分,
    ∵E是AB的中点,H是AD的中点,
    ∴AE=AH,EH是△ABD的中位线,
    ∴EN=HN,BD=2EH=4HN,
    由题意可以设AN=PC=x,EN=HN=PF=PG=y.
    则有,
    解得:,
    ∴AN=2,HN=3,
    ∴BD=4HN=12;
    故答案为:12.
    【点睛】
    本题考查了菱形的性质,矩形的判定和性质、三角形中位线定理、方程组的解法等知识,解题的关键是学会利用参数构建方程解决问题.
    2、
    【解析】
    【分析】
    根据题意,将长方形底面和中间墙展开为平面图,并连接BD,根据两点之间直线段最短和勾股定理的性质计算,即可得到答案.
    【详解】
    将长方形底面和中间墙展开后的平面图如下,并连接BD
    根据题意,展开平面图中的
    ∴一只蚂蚱从点爬到点,最短路径长度为展开平面图中BD长度
    ∵是长方形地面


    故答案为:.
    【点睛】
    本题考查了立体图形展开图、矩形、两点之间直线段最短、勾股定理的知识;解题的关键是熟练掌握立体图形展开图、勾股定理的知识,从而完成求解.
    3、八##8
    【解析】
    【分析】
    n边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
    【详解】
    解:根据n边形的内角和公式,得
    (n-2)•180=1080,
    解得n=8.
    ∴这个多边形的边数是8.
    故答案为:八.
    【点睛】
    本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
    4、##3.5##
    【解析】
    【分析】
    延长AB、CF交于点H,由“ASA”可证△AFH≌△AFC,可得AC=AH=12,HF=CF,由三角形中位线定理可求解.
    【详解】
    解:如图,延长、交于点,
    四边形是平行四边形,,,

    平分,,
    在和中,


    ,,

    点是的中点,,
    ∴EF是△CBH的中位线,

    故答案为:.
    【点睛】
    本题考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,三角形中位线等知识,添加恰当辅助线构造全等三角形是本题的关键.
    5、八
    【解析】
    【分析】
    根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.
    【详解】
    解:由题意得,n-2=6,
    解得:n=8,
    故答案为:八.
    【点睛】
    本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.
    三、解答题
    1、 (1)证明见解析
    (2)
    【解析】
    【分析】
    (1)先根据折叠的性质可得,再根据矩形的性质、平行线的性质可得,从而可得,然后根据等腰三角形的判定即可得证;
    (2)设,从而可得,先在中,利用勾股定理可得的值,再利用三角形的面积公式即可得.
    (1)
    证明:由折叠的性质得:,
    四边形是长方形,




    (2)
    解:四边形是长方形,

    设,则,
    在中,,即,
    解得,
    即,
    则阴影部分的面积为.
    【点睛】
    本题考查了矩形与折叠问题、等腰三角形的判定、勾股定理等知识,熟练掌握矩形与折叠的性质是解题关键.
    2、 (1)证明见解析
    (2)证明见解析
    【解析】
    【分析】
    (1)先根据平行四边形的性质可得,再根据垂直的定义可得,然后根据三角形全等的判定定理(定理)即可得证;
    (2)先根据平行四边形的性质可得,再根据平行线的性质可得,然后根据矩形的判定即可得证.
    (1)
    证明:四边形是平行四边形,



    在和中,,

    (2)
    证明:,

    四边形是平行四边形,


    在四边形中,,
    四边形是矩形.
    【点睛】
    本题考查了平行四边形的性质、三角形全等的判定定理、矩形的判定等知识点,熟练掌握各判定定理与性质是解题关键.
    3、见详解
    【解析】
    【分析】
    先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.
    【详解】
    解:先作m的垂直平分线,取m的一半为AB,
    以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,
    过A作BC的平行线,与过C作AB的平行线交于D,
    则四边形ABCD为所求作矩形;

    ∵AD∥BC,CD∥AB,
    ∴四边形ABCD为平行四边形,
    ∵BC⊥AB,
    ∴∠ABC=90°,
    ∴四边形ABCD为矩形,
    ∵AB=,AC=m,
    ∴矩形的宽与对角线满足条件,
    ∴四边形ABCD为所求作矩形.
    【点睛】
    本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.
    4、150°
    【解析】
    【分析】
    先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.
    【详解】
    解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,
    ∴∠ADC=180°-∠ADE=55°,
    ∵∠A+∠B+∠C+∠ADE=360°,
    ∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.
    【点睛】
    此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.
    5、 (1)7
    (2)见解析
    【解析】
    【分析】
    (1)根据平行四边形的性质,可得AB∥CD,AB=CD,可得∠EBF=∠CFB,再由∵FB平分,可得∠EFB=∠EBF,从而得到BE=EF=5,即可求解;
    (2)再CF上截取FN=FG,可得,从而得到∠BGF=∠BNF,再由∠GBF=∠EFD,可得到∠BFD=∠BNC,再根据BC⊥BD,∠BCD=45°,可得BC=BD,从而证得△BDF≌△BCN,进而得到NC=FD,即可求证.
    (1)
    解:在中,AB∥CD,AB=CD,
    ∴∠EBF=∠CFB,
    ∵FB平分,
    ∴∠EFB=∠CFB,
    ∴∠EFB=∠EBF,
    ∴BE=EF=5,
    ∵AE=2,
    ∴CD=AB=AE+BE=7;
    (2)
    证明:如图,再CF上截取FN=FG,
    ∵,
    ∴ ,
    ∴∠BGF=∠BNF,
    ∵ ,∠BFG+∠BGF+∠GBF=180°,∠GBF=∠EFD,
    ∴∠BGF=∠BFN,
    ∴∠BFN=∠BNF,
    ∴∠BFD=∠BNC,
    ∵BC⊥BD,
    ∴∠CBD=90°,
    ∵∠BCD=45°,
    ∴∠BDC=∠BCD=45°,
    ∴BC=BD,
    ∴△BDF≌△BCN(AAS),
    ∴NC=FD,
    ∴CD=DF+FN+CN=2FD+FG,
    ∵AB=CD,
    ∴FG+2FD=AB.
    【点睛】
    本题主要考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的性质,全等三角形的判定和性质,等腰三角形的性质是解题的关键.

    相关试卷

    初中数学冀教版八年级下册第二十章 函数综合与测试课后练习题:

    这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后练习题,共22页。试卷主要包含了函数的自变量x的取值范围是,如图,点A的坐标为,下图中表示y是x函数的图象是等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试优秀同步训练题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀同步训练题,共29页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。

    数学冀教版第二十二章 四边形综合与测试精品同步达标检测题:

    这是一份数学冀教版第二十二章 四边形综合与测试精品同步达标检测题,共25页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map