![难点详解冀教版八年级数学下册第二十二章四边形专项练习试卷第1页](http://m.enxinlong.com/img-preview/2/3/12734861/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版八年级数学下册第二十二章四边形专项练习试卷第2页](http://m.enxinlong.com/img-preview/2/3/12734861/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版八年级数学下册第二十二章四边形专项练习试卷第3页](http://m.enxinlong.com/img-preview/2/3/12734861/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十二章 四边形综合与测试精品一课一练
展开
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品一课一练,共30页。试卷主要包含了如图,在中,DE平分,,则,下列关于的叙述,正确的是,如图,菱形的对角线等内容,欢迎下载使用。
八年级数学下册第二十二章四边形专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )
①;②;③;④.
A.①②③ B.①②④ C.①③④ D.②③④
2、下列说法正确的是( )
A.只有正多边形的外角和为360°
B.任意两边对应相等的两个直角三角形全等
C.等腰三角形有两条对称轴
D.如果两个三角形一模一样,那么它们形成了轴对称图形
3、如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为( )
A.8 B.10 C.16 D.20
4、如图,在中,DE平分,,则( )
A.30° B.45° C.60° D.80°
5、下列关于的叙述,正确的是( )
A.若,则是矩形 B.若,则是正方形
C.若,则是菱形 D.若,则是正方形
6、如图,在给定的正方形中,点从点出发,沿边方向向终点运动, 交于点,以,为邻边构造平行四边形,连接,则的度数的变化情况是( )
A.一直减小 B.一直减小后增大 C.一直不变 D.先增大后减小
7、如图,菱形的对角线、相交于点,,,为过点的一条直线,则图中阴影部分的面积为( )
A.4 B.6 C.8 D.12
8、如图,DE是的中位线,若,则BC的长为( )
A.8 B.7 C.6 D.7.5
9、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是( )
A.∠D=90° B.AB=CD C.AD=BC D.BC=CD
10、小明想判断家里的门框是否为矩形,他应该( )
A.测量三个角是否都是直角 B.测量对角线是否互相平分
C.测量两组对边是否分别相等 D.测量一组对角是否是直角
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,平行四边形ABCD中,BD为对角线,,BE平分交DC于点E,连接AE,若,则为______度.
2、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_____.
3、如图,正方形的对角线、相交于点O,等边绕点O旋转,在旋转过程中,当时,的度数为____________.
4、如图,在中,,D为外一点,使,E为BD的中点若,则__________.
5、在平行四边形ABCD中,对角线AC长为8cm,,,则它的面积为______cm2.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知正方形ABCD,点E在边BC上,连接AE.
(1)尺规作图:作,使,点F是的边与线段AB的交点.(不写作法,保留作图痕迹);
(2)探究:AE,DF的位置关系和数量关系,并说明理由.
2、如图1,已知∠ACD是ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?
(1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A 180°.(横线上填<、=或>)
(2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P= .
(3)解决问题:如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.
3、已知:△ABC,AD为BC边上的中线,点M为AD上一动点(不与点A重合),过点M作ME∥AB,过点C作CE∥AD,连接AE.
(1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形
(2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;
(3)如图3,延长BM交AC于点N,若点M为AD的中点,求的值.
4、已知:线段m.
求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.
5、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算AC2+BC2的值等于_____;
(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.
【详解】
解:∵四边形ABCD是正方形,
∴,,
在与中,
,
∴,
∴,①正确;
∵,
,
∴,
∴,
∴,②正确;
∵GF与BG的数量关系不清楚,
∴无法得AG与GE的数量关系,③错误;
∵,
∴,
∴,
即,④正确;
综上可得:①②④正确,
故选:B.
【点睛】
题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.
2、B
【解析】
【分析】
选项A根据多边形的外角和定义判断即可;选项B根据三角形全等的判定方法判断即可;选项C根据轴对称图形的定义判断即可;选项D根据轴对称的性质判断即可.
【详解】
解:A.所有多边形的外角和为,故本选项不合题意;
B.任意两边对应相等的两个直角三角形全等,说法正确,故本项符合题意;
C.等腰三角形有1条对称轴,故本选项不合题意;
D.如果两个三角形一模一样,那么它们不一定形成轴对称图形,故本选项不合题意;
故选:B.
【点睛】
此题主要考查了多边形的外角和,轴对称的性质,等腰三角形的性质,全等三角形的判定,解题的关键是掌握轴对称图形的概念.
3、C
【解析】
【分析】
根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的周长.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC,AB=CD,AD=BC,
∵OE⊥AC,
∴OE是线段AC的垂直平分线,
∴AE=CE,
∵△CDE的周长为8,
∴CE+DE+CD=8,即AD+CD =8,
∴平行四边形ABCD的周长为2(AD+CD)=16.
故选:C.
【点睛】
本题考查了平行四边形的性质、线段垂直平分线的判定和性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.
4、C
【解析】
【分析】
根据平行四边形的性质得,故,由DE平分得,即可计算.
【详解】
∵四边形ABCD是平行四边形,
∴,
∴,
∵DE平分,
∴,
∴.
故选:C.
【点睛】
本题考查平行四边形的性质,平行线的性质以及角平分线的定义,掌握平行四边形的性质是解题的关键.
5、A
【解析】
【分析】
由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项、、错误,正确;即可得出结论.
【详解】
解:中,,
四边形是矩形,选项符合题意;
中,,
四边形是菱形,不一定是正方形,选项不符合题意;
中,,
四边形是矩形,不一定是菱形,选项不符合题意;
中,,
四边形是菱形,选项不符合题意;
故选:.
【点睛】
本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.
6、A
【解析】
【分析】
根据题意,作交的延长线于,证明是的角平分线即可解决问题.
【详解】
解:作交的延长线于,
∵四边形 是正方形,
∴,
,
∵,
∴,,
∴,
∴,
∴,
∵四边形是平行四边形,
∴,,
∵, ,
∴,
∵,.
∴,
∴,,
∴,
∴,
∵,
∴,
∴是的角平分线,
∴点的运动轨迹是的角平分线,
∵,
由图可知,点P从点D开始运动,所以一直减小,
故选:A .
【点睛】
本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
7、B
【解析】
【分析】
根据菱形的性质可证出,可将阴影部分面积转化为的面积,根据菱形的面积公式计算即可.
【详解】
解:四边形为菱形,
,,,
,
,
∴,
∴,
∴
故选:.
【点睛】
此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为的面积为解题关键.
8、A
【解析】
【分析】
已知DE是的中位线,,根据中位线定理即可求得BC的长.
【详解】
是的中位线,,
,
故选:A.
【点睛】
此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.
9、D
【解析】
略
10、A
【解析】
【分析】
根据矩形的判定方法解题.
【详解】
解:A、三个角都是直角的四边形是矩形,
选项A符合题意;
B、对角线互相平分的四边形是平行四边形,
选项B不符合题意,
C、两组对边分别相等的四边形是平行四边形,
选项C不符合题意;
D、一组对角是直角的四边形不是矩形,
选项D不符合题意;
故选:A.
【点睛】
本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.
二、填空题
1、22
【解析】
【分析】
先根据平行四边形的性质可得,从而可得,再根据等边三角形的判定证出是等边三角形,根据等边三角形的性质可得,从而可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质即可得.
【详解】
解:平行四边形中,,
,
,
,
平分,
,
是等边三角形,
,
,
在和中,,
,
,
故答案为:22.
【点睛】
本题考查了平行四边形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.
2、6
【解析】
【分析】
利用多边形的外角和以及多边形的内角和定理即可解决问题.
【详解】
解:多边形的外角和是360度,多边形的内角和是外角和的2倍,
则内角和是720度,
,
这个多边形的边数为6.
故答案为:6.
【点睛】
本题主要考查了多边形的内角和定理与外角和定理,解题的关键是熟练掌握多边形的外角和以及多边形的内角和定理.
3、或
【解析】
【分析】
分两种情况:①根据正方形与等边三角形的性质得OC=OD,∠COD=90°,OE=OF,∠EOF=60°,可判断△ODE≌△OCF,则∠DOE=∠COF,于是可求∠DOF,即可得出答案;②同理可证得△ODE≌△OCF,所以∠DOE=∠COF,于是可求∠BOF,即可得答案.
【详解】
解:情况1,如下图:
∵四边形ABCD是正方形,
∴OD=OC,∠AOD=∠COD=90°,
∵△OEF是等边三角形,
∴OE=OF,∠EOF=60°,
在△ODE和△OCF中,
∴△ODE≌△OCF(SSS),
∴∠DOE=∠COF,
∴∠DOF=∠COE,
∴∠DOF=(∠COD-∠EOF)=×(90°﹣60°)=15°,
∴∠AOF=∠AOD+∠DOF=90°+15°=105°;
情况2,如下图:连接DE、CF,
∵四边形ABCD为正方形,
∴OC=OD,∠AOD=∠COB=90°,
∵△OEF为等边三角形,
∴OE=OF,∠EOF=60°,
在△ODE和△OCF中,
∴△ODE≌△OCF(SSS),
∴∠DOE=∠COF,
∴∠DOE=∠COF=(360°-∠COD-∠EOF)=×(360°﹣90°﹣60°)=105°,
∴∠BOF=∠COF-∠COB=105°-90°=15°,
∴∠AOF=∠AOB-∠BOF=90°-15°=75°,
故答案为:105°或75°.
【点睛】
本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形与等边三角形的性质,全等三角形的判定与性质,做题的关键是注意两种情况和证三角形全等.
4、##30度
【解析】
【分析】
延长BC、AD交于F,通过全等证明C是BF的中点,然后利用中位线的性质即可.
【详解】
解:延长BC、AD交于F,
在△ABC和△AFC中
,
∴△ABC≌△AFC(ASA),
∴BC=FC,
∴C为BF的中点,
∵E为BD的中点,
∴CE为△BDF的中位线,
∴CE//AF,
∴∠ACE=∠CAF,
∵∠ACB=90°,∠ABC=60°,
∴∠BAC=30°,
∴∠ACE=∠CAF=∠BAC=30°,
故答案为:30°.
【点睛】
本题考查了全等三角形的判定与性质、三角形中位线的定义与性质,以及平行线的性质,作出正确的辅助线是解题的关键.
5、20
【解析】
【分析】
根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.
【详解】
解:如图,过B作BE⊥AC于E.
在直角三角形ABE中,
∠BAC=30°,AB=5,
∴BE=AB=,
S△ABC=AC•BE=10,
∴S▱ABCD=2S△ABC=20(cm2).
故答案为:20.
【点睛】
本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.
三、解答题
1、 (1)见解析;
(2),,见解析
【解析】
【分析】
(1)根据题意作出即可;
(2)证明即可得结论.
(1)
如图,即为所求.
(2)
,.
∵四边形ABCD是正方形,
∴,.
在和中,
∴(AAS),
∴.
∵,.
∴,即.
【点睛】
本题考查了正方形的性质,三角形全等的性质与判定,作一个角等于已知角,掌握全等三角形的性质与判定是解题的关键.
2、 (1)=
(2)∠P=90°-∠A
(3)∠P=180°-∠BAD-∠CDA,探究见解析
【解析】
【分析】
(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;
(2)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°−∠A;
(3)根据平角的定义得:∠EBC=180°-∠1,∠FCB=180°-∠2,由角平分线得:∠3=∠EBC=90°−∠1,∠4=∠FCB=90°−∠2,相加可得:∠3+∠4=180°−(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.
(1)
∠DBC+∠ECB-∠A=180°,
理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,
∴∠DBC+∠ECB-∠A=180°,
故答案为:=;
(2)
∠P=90°-∠A,
理由是:∵BP平分∠DBC,CP平分∠ECB,
∴∠CBP=∠DBC,∠BCP=∠ECB,
∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-(∠DBC+∠ECB),
∵∠DBC+∠ECB=180°+∠A,
∴∠P=180°-(180°+∠A)=90°-∠A.
故答案为:∠P=90°-∠A,
(3)
∠P=180°-∠BAD-∠CDA,
理由是:如图,
∵∠EBC=180°-∠1,∠FCB=180°-∠2,
∵BP平分∠EBC,CP平分∠FCB,
∴∠3=∠EBC=90°-∠1,∠4=∠FCB=90°-∠2,
∴∠3+∠4=180°-(∠1+∠2),
∵四边形ABCD中,∠1+∠2=360°-(∠BAD+∠CDA),
又∵△PBC中,∠P=180°-(∠3+∠4)=(∠1+∠2),
∴∠P=×[360°-(∠BAD+∠CDA)]=180°-(∠BAD+∠CDA)=180°-∠BAD-∠CDA.
【点睛】
本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.
3、 (1)①见解析;②见解析
(2)是,见解析
(3)
【解析】
【分析】
(1)①根据DE∥AB,得出∠EDC=∠ABM,根据CE∥AM,∠ECD=∠ADB,根据AM是△ABC的中线,且D与M重合,得出BD=DC,再证△ABD≌△EDC(ASA)即可;
②由①得△ABD≌△EDC,得出AB=ED,根据AB∥ED,即可得出结论.
(2)如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证△BMD≌△MFL(AAS),再证△ABM≌△EMF(ASA),可证四边形ABME是平行四边形;
(3)过点D作DG∥BN交AC于点G,根据M为AD的中点,DG∥MN,得出MN为三角形中位线MN=DG,根据D为BC的中点,得出DG=BN,可得MN=BN,可求即可.
(1)
证明:①∵DE∥AB,
∴∠EDC=∠ABM,
∵CE∥AM,
∴∠ECD=∠ADB,
∵AM是△ABC的中线,且D与M重合,
∴BD=DC,
在△ABD与△EDC中,
,
∴△ABD≌△EDC(ASA),
即△ABM≌△EMC;
②由①得△ABD≌△EDC,
∴AB=ED,
∵AB∥ED,
∴四边形ABDE是平行四边形;
(2)
成立.理由如下:
如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,
∵AD∥EC,ML∥DC,
∴四边形MDCL为平行四边形,
∴ML=DC=BD,
∵ML∥DC,
∴∠FML=∠MBD,
∵AD∥EC,
∴∠BMD=∠MFL,∠AMB=∠EFM,
在△BMD和△MFL中
∠MBD=∠FML∠BMD=∠MFLBD=ML,
∴△BMD≌△MFL(AAS),
∴BM=MF ,
∵AB∥ME,
∴∠ABM=∠EMF,
在△ABM和△EMF中,
∴△ABM≌△EMF(ASA),
∴AB=EM,
∵AB∥EM,
∴四边形ABME是平行四边形;
(3)
解:过点D作DG∥BN交AC于点G,
∵M为AD的中点,DG∥MN,
∴MN=DG,
∵D为BC的中点,
∴DG=BN,
∴MN=BN,
∴,
由(2)知四边形ABME为平行四边形,
∴BM=AE,
∴.
【点睛】
本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键.
4、见详解
【解析】
【分析】
先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.
【详解】
解:先作m的垂直平分线,取m的一半为AB,
以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,
过A作BC的平行线,与过C作AB的平行线交于D,
则四边形ABCD为所求作矩形;
∵AD∥BC,CD∥AB,
∴四边形ABCD为平行四边形,
∵BC⊥AB,
∴∠ABC=90°,
∴四边形ABCD为矩形,
∵AB=,AC=m,
∴矩形的宽与对角线满足条件,
∴四边形ABCD为所求作矩形.
【点睛】
本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.
5、 11 见解析
【解析】
【分析】
(1)直接利用勾股定理求出即可;
(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.
【详解】
解:(1)AC2+BC2=()2+32=11;
故答案为:11;
(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;
延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,
【点睛】
本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品测试题,共33页。
这是一份初中冀教版第二十二章 四边形综合与测试优秀随堂练习题,共27页。试卷主要包含了如图,菱形的对角线,已知等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品综合训练题,共27页。试卷主要包含了如图,正方形的边长为,对角线等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)