冀教版七年级下册第十一章 因式分解综合与测试随堂练习题
展开
这是一份冀教版七年级下册第十一章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了下列多项式中有因式x﹣1的是,下列因式分解正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、多项式分解因式的结果是( )A. B.C. D.2、对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式,例如图①可以得到用完全平方公式进行因式分解的等式a2+2ab+b2=(a+b)2,如图②是由4个长方形拼成的一个大的长方形,用不同的方式表示此长方形的面积,由此不能得到的因式分解的等式是( )A.a(m+n)+b(m+n)=(a+b)(m+n)B.m(a+b)+n(a+b)=(a+b)(m+n)C.am+bm+an+bn=(a+b)(m+n)D.ab+mn+am+bn=(a+b)(m+n)3、已知x,y满足,则的值为( )A.—5 B.4 C.5 D.254、下列各式从左到右的变形中,是因式分解的为( )A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)5、下列多项式中有因式x﹣1的是( )①x2+x﹣2;②x2+3x+2;③x2﹣x﹣2;④x2﹣3x+2A.①② B.②③ C.②④ D.①④6、下列因式分解正确的是( )A.a2+1=a(a+1) B.C.a2+a﹣5=(a﹣2)(a+3)+1 D.7、下列各式中,能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.﹣a2+b2 C.a2+(﹣b)2 D.a3﹣ab38、下列多项式中,不能用公式法因式分解的是( )A. B. C. D.9、下列从左到右的变形,是分解因式的是( )A.xy2(x﹣1)=x2y2﹣xy2 B.2a2+4a=2a(a+2)C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+110、已知m=1﹣n,则m3+m2n+2mn+n2的值为( )A.﹣2 B.﹣1 C.1 D.2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:(a+b)2﹣(a+b)=_______.2、因式分解:______.3、因式分解:________.4、在实数范围内分解因式﹣64=___.5、分解因式:a3﹣2a2b+ab2=___.三、解答题(5小题,每小题10分,共计50分)1、因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.2、如果的三边长满足等式,试判断此的形状并写出你的判断依据.3、分解因式:2x3+12x2y+18xy2.4、因式分解:(1); (2).5、分解因式:(1);(2). -参考答案-一、单选题1、B【解析】【分析】先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y).故选:B.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.2、D【解析】【分析】由面积的和差关系以及S长方形ABCD=(a+b)(m+n)求解即可【详解】解:如图②,S长方形ABCD=(a+b)(m+n),A.S长方形ABCD=S长方形ABFH+S长方形HFCD=a(m+n)+b(m+n)=(a+b)(m+n),不符合题意;B.S长方形ABCD=S长方形AEGD+S长方形BCGE=m(a+b)+n(a+b)=(a+b)(m+n),不符合题意;C.S长方形ABCD=S长方形AEQH+S长方形HQGD+S长方形EBFQ+S长方形QFCG=am+bm+an+bn=(a+b)(m+n),不符合题意;D.不能得到ab+mn+am+bn=(a+b)(m+n),故D符合题意;故选:D.【点睛】本题考查了因式分解,整式乘法与图形的面积,数形结合是解题的关键.3、A【解析】【分析】根据题意利用平方差公式将变形,进而整体代入条件即可求得答案.【详解】解:.故选:A.【点睛】本题考查代数式求值,熟练掌握平方差公式的运用以及结合整体思维分析是解题的关键.4、C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.5、D【解析】【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:①x2+x﹣2=;②x2+3x+2=;③x2﹣x﹣2=;④x2﹣3x+2=.∴有因式x﹣1的是①④.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.6、D【解析】【分析】根据因式分解的定义严格判断即可.【详解】∵+1≠a(a+1)∴A分解不正确;∵,不是因式分解,∴B不符合题意;∵(a﹣2)(a+3)+1含有加法运算,∴C不符合题意;∵,∴D分解正确;故选D.【点睛】本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.7、B【解析】【分析】能用平方差公式分解因式的式子必须是两项是平方项,符号为异号.【详解】解:A、两项的符号相同,不能用平方差公式分解因式;故此选项错误;B、,能用平方差公式分解因式,故此选项正确;C、两项的符号相同,不能用平方差公式分解因式,故此选项错误;D.提公因式后不是平方差形式,故不能用平方差公式因式分解,故此选项错误.故选B.【点睛】本题考查了平方差公式分解因式,熟记平方差公式结构两项式,异号,平方项(或变性后具备平方项)是解题的关键.8、D【解析】【分析】利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;故C不符合题意;,不能用公式法分解因式,故D符合题意;故选D【点睛】本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.9、B【解析】【分析】根据因式分解的意义对各选项进行逐一分析即可.【详解】解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、符合因式分解的意义,是因式分解,故本选项正确,符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.故选:B.【点睛】本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.10、C【解析】【分析】先化简代数式,再代入求值即可;【详解】∵m=1﹣n,∴m+n=1,∴m3+m2n+2mn+n2=m2(m+n)+2mn+n2=m2+2mn+n2=(m+n)2=12=1,故选:C.【点睛】本题主要考查了代数式求值,准确计算是解题的关键.二、填空题1、##【解析】【分析】直接找出公因式(a+b),进而分解因式得出答案.【详解】解:(a+b)2﹣(a+b)=(a+b)(a+b﹣1).故答案为:(a+b)(a+b﹣1).【点睛】此题主要考查因式分解,解题的关键是熟知提公因式法的运用.2、【解析】【分析】直接提取公因式整理即可.【详解】解:,故答案是:.【点睛】本题考查了提取公因式因式分解,解题的关键是找准公因式.3、m(m+1)(m﹣1).【解析】【分析】原式提取m,再利用平方差公式分解即可.【详解】解:原式=m(m2﹣12)=m(m+1)(m﹣1).故答案为:m(m+1)(m﹣1).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、【解析】【分析】利用平方差公式,进行分解因式即可.【详解】﹣64====.【点睛】本题考查了因式分解,灵活运用平方差公式是解题的关键.5、【解析】【分析】先提取公因式a,再利用完全平方公式因式分解.【详解】解:,故答案为:.【点睛】本题考查综合利用提公因式法和公式法因式分解.一般有公因式先提取公因式,再看是否能用公式法因式分解.三、解答题1、 (1)(x﹣3)(5x﹣2y)(2)(1﹣a)(1﹣b)(1+a)(1+b)【解析】【分析】(1)根据题意将原式分为两组:(5x2﹣15x)、﹣(2xy﹣6y),然后利用提取公因式法进行因式分解;(2)根据题意利用平方差公式进行因式分解即可得出答案.(1)解:原式=(5x2﹣15x)﹣(2xy﹣6y)=5x(x﹣3)﹣2y(x﹣3)=(x﹣3)(5x﹣2y);(2)解:原式=(1+ab﹣a﹣b)(1+ab+a+b)=[(1﹣a)﹣b(1﹣a)][(1+a)+b(1+a)]=(1﹣a)(1﹣b)(1+a)(1+b).【点睛】本题考查平方差公式,分组分解法分解因式,要先把式子整理,再分解因式.对于一个四项式用分组分解法进行因式分解,难点是采用两两分组还是三一分组.2、是等边三角形,理由见解析【解析】【分析】利用因式分解得出三边长的关系,即可判断三角形形状.【详解】解:是等边三角形证明:∵,∴.∴,即,∴,∴,即,∴是等边三角形.【点睛】本题考查了因式分解的应用,解题关键是熟练进行因式分解,得出三角形的三边关系.3、2x(x+3y)2【解析】【分析】先提公因式,进而根据完全平方公式因式分解即可.【详解】解:2x3+12x2y+18xy2=2x(x2+6xy+9y2)=2x(x+3y)2.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.4、(1);(2).【解析】【分析】(1)提取公因式,进行因式分解;(2)提取公因式后,再利用平方差公式进行因式分解.【详解】解:(1);(2),.【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及公式法进行因式分解.5、(1);(2)【解析】【分析】(1)先提取公因式,然后再根据平方差公式进行因式分解即可;(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可.【详解】解:(1)原式=;(2)原式=.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.
相关试卷
这是一份冀教版七年级下册第十一章 因式分解综合与测试一课一练,共16页。试卷主要包含了把分解因式的结果是.,下列因式分解正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试随堂练习题,共17页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试达标测试,共16页。试卷主要包含了下列各式中,正确的因式分解是等内容,欢迎下载使用。