2020-2021学年第八章 整式乘法综合与测试同步训练题
展开
这是一份2020-2021学年第八章 整式乘法综合与测试同步训练题,共20页。试卷主要包含了下列运算正确的是,下列计算正确的是,计算得等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、计算的结果是( )A. B. C. D.2、如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A. B.C. D.3、福建省教育发展基金会通过腾讯公益平台发起“关爱重度残疾儿童”公益募捐活动.首轮网上公益活动募捐计划93万元资金,重点扶持原23个省级扶贫开发工作重点县,助力重度残疾儿童少年实施送教上门工作,计划惠及860名重度残疾儿童.将数据93万用科学记数法表示为( ).A. B. C. D.4、 “一带一路”建设将促进我国与世界一些国家的互利合作,“一带一路”地区复盖总人口约为4400000000人,这个数用科学记数法表示为( )A.4.4×109 B.44×108 C.0.44×1010 D.440×1075、若三角形的底边为2n,高为2n﹣1,则此三角形的面积为( )A.4n2+2n B.4n2﹣1 C.2n2﹣n D.2n2﹣2n6、下列运算正确的是( )A.(﹣a)2=﹣a2 B.2a2﹣a2=2C.a2•a=a3 D.(a﹣1)2=a2﹣17、电影《长津湖》备受观众喜爱,截止到2021年12月初,累计票房57.44亿元,57.44亿用科学记数法表示为( )A. B. C. D.8、下列计算正确的是( )A. B. C. D.9、计算得( )A. B. C. D.10、已知,,则的值为( )A.8 B.9 C.10 D.12第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、若,则__.2、阅读理解:①根据幂的意义,表示个相乘;则;②,知道和可以求,我们不妨思考;如果知道,,能否求呢?对于,规定,,例如:,所以,.记,,,;与之间的关系式为__.3、比较大小[(﹣2)3]2___(﹣22)3.(填“>”,“<”或“=”)4、若,则___________.5、若,,则________.三、解答题(5小题,每小题10分,共计50分)1、阅读材料一:可以展开成一个有规律的多项式:;;;;……阅读材料二:我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.下面我们依次对展开式的各项系数进一步研究发现,当取正整数时可以单独列成表中的形式:例如,在三角形中第二行的三个数1,2,1,恰好对应展开式中的系数,(1)结合两个材料,写出的展开式:(2)多项式的展开式是一个_____次_____项式?并预测第三项的系数是_____;(3)请你猜想多项式取正整数)的展开式的各项系数之和,并进行合理说明(结果用含字母的代数式表示);(4)利用材料中的规律计算:(不用材料中的规律计算不给分).2、计算:(1)a4•3a2+(﹣2a2)3+5a6;(2)(a+b)(a2﹣ab+b2);(3)(12ab2﹣9a2b)÷3ab;(4)(x﹣2y+3)(x+2y﹣3).3、在计算时我们如果能总结规律,并加以归纳,得出数学公式,一定会提高解题的速度,在解答下面问题中请留意其中的规律.(1)计算后填空:(x+1)(x+2)= ;(x+3)(x﹣1)= ;(2)归纳、猜想后填空:(x+a)(x+b)=x2+ x+ ;(3)运用(2)猜想的结论,直接写出计算结果:(x+2)(x+m)= .4、对于一个图形,通过不同的方法计算图形的面积,就可以得到一个数学等式.(1)模拟练习:如图,写出一个我们熟悉的数学公式: ;(2)解决问题:如果,求的值;(3)类比探究:如果一个长方形的长和宽分别为和,且,求这个长方形的面积.5、计算:(1);(2). -参考答案-一、单选题1、D【解析】【分析】利用单项式除以单项式法则,即可求解.【详解】解:.故选:D【点睛】本题主要考查了单项式除以单项式,熟练掌握单项式除以单项式法则是解题的关键.2、A【解析】【分析】如图,两个正方形面积的差,通过将阴影部分面积转移,构造一个长为,宽为的长方形,相同的面积用不同的表达式表示,从而可推导验证乘法公式中的平方差公式.【详解】解:如图,将大正方形的一边延长到,另一边长表示成的形式 变化前后面积相等由题意可知长方形面积为大正方形减去小正方形后的面积为故有故选A.【点睛】本题主要考察了平方差公式.解题的关键在于对长方形的构造.3、A【解析】【分析】科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:93万=930000=9.3×105,故选:A.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:4400000000=4.4×109.故选:A.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、C【解析】【分析】根据三角形面积公式列式,然后利用单项式乘多项式的运算法则进行计算.【详解】解:三角形面积为×2n(2n−1)=2n2-n,故选:C.【点睛】本题考查单项式乘多项式的运算,理解三角形面积=×底×高,掌握单项式乘多项式的运算法则是解题关键.6、C【解析】【分析】根据乘方的意义,合并同类项,同底数幂的乘法,完全平方公式逐项分析即可.【详解】解:A.(﹣a)2=a2,故不正确;B. 2a2﹣a2=a2,故不正确;C. a2•a=a3,正确;D.(a﹣1)2=a2﹣2 a +1,故不正确;故选C.【点睛】本题考查了整式的运算,熟练掌握运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.完全平方公式是(a±b)2=a2±2ab+b2.7、C【解析】【分析】用科学记数法表示成的形式,其中,,代入可得结果.【详解】解:的绝对值大于表示成的形式,表示成故选C.【点睛】本题考查了科学记数法.解题的关键在于确定的值.8、C【解析】【分析】根据同底数幂的乘法、积的乘方和幂的乘方分别求出每个式子的值,再判断即可.【详解】A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误;故选:C.【点睛】本题考查了同底数幂的乘法、积的乘方和幂的乘方,能根据法则求出每个式子的值是解此题的关键.9、A【解析】【分析】变形后根据完全平方公式计算即可.【详解】解:==,故选A.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.10、B【解析】【分析】根据逆用同底数幂的除法以及幂的乘方运算进行求解即可【详解】解:∵,,∴故选B【点睛】本题考查了逆用同底数幂的除法以及幂的乘方运算,掌握同底数幂的除法以及幂的乘方运算是解题的关键.二、填空题1、【解析】【分析】根据零指数幂的意义即可得到结论.【详解】解:,,,故答案为:.【点睛】本题考查了零指数幂,熟练掌握零指数幂的意义是解题的关键.2、【解析】【分析】由题意得:x=54m,y−3=54m+2,然后根据同底数幂的逆用得问题的答案.【详解】解:由题意得:,,,即.故答案为:.【点睛】本题考查了有理数的乘方、同底数幂乘法的逆用,正确理解新规定是解题的关键.3、>【解析】【分析】利用幂的乘方和积的乘方先计算[(-2)3]2与(-22)3,再比较大小得结论.【详解】解:∵[(-2)3]2=(-2)3×2=(-2)6=26,(-22)3=-26,又∵26>-26,∴[(-2)3]2>(-22)3.故答案为:>.【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方法则是解决本题的关键.4、【解析】【分析】根据一直等式得到,再整体代入所求式子,逐步运算即可.【详解】解:∵,∴,∴,∴======…======故答案为:.【点睛】本题考查了代数式求值,根据所给式子的特点合理变形,熟练运用整体思想,掌握规律是解题的关键.5、12【解析】【分析】由变形为,再把和代入求值即可.【详解】解:,,.故答案为:12.【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是将变形为.三、解答题1、 (1)5,10,10,5(2),,(3),理由见解析(4)1【解析】【分析】(1)根据材料二的规律即可得;(2)根据归纳出规律,由此即可得;(3)先求出的展开式的各项系数之和,再归纳出一般规律,由此即可得;(4)参考的展开式即可得.(1)解:由材料二得:,故答案为:5,10,10,5;(2)解:是一次二项式,的展开式是二次三项式,的展开式是三次四项式,则多项式的展开式是次项式,由材料二的图可知,的第三项的系数是,的第三项的系数是,的第三项的系数是,的第三项的系数是,归纳类推得:的第三项的系数是,故答案为:,,;(3)解:多项式取正整数)的展开式的各项系数之和为,理由如下:的展开式的各项系数之和是,的展开式的各项系数之和是,的展开式的各项系数之和是,的展开式的各项系数之和是,归纳类推得:多项式的展开式的各项系数之和为;(4)解:.【点睛】本题考查了多项式的乘法,正确归纳类推出一般规律是解题关键.2、(1)0;(2)a3+b3;(3)4b﹣3a;(4)x2﹣4y2+12y﹣9【解析】【分析】(1)根据整式的乘法以及整式的加法运算法则即可求出答案.(2)根据整式的乘法运算法则即可求出答案.(3)根据整式的除法运算法则即可求出答案.(4)根据平方差公式以及完全平方公式即可求出答案.【详解】解:(1)原式.(2)原式.(3)原式.(4)原式.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算以及乘除运算法则,本题属于基础题型.3、 (1)x2+3x+2,x2+2x﹣3(2)(a+b),ab(3)x2+(2+m)x+2m【解析】【分析】(1)根据多项式乘以多项式法则进行计算即可;(2)根据(1)的结果得出规律即可;(3)根据(x+a)(x+b)=x2+(a+b)x+ab得出即可.(1)解: ; ,故答案为:x2+3x+2,x2+2x﹣3;(2)解:.故答案为:(a+b),ab;(3)解: .故答案为:.【点睛】本题考查了多项式乘以多项式的应用,主要考查学生的计算能力.4、 (1)(a+b)2=a2+2ab+b2(2)39(3)8【解析】【分析】(1)根据图形的面积的两种不同计算方法得到完全平方公式;(2)根据完全平方公式变形即可求解;(3)根据长方形的周长和面积公式以及完全平方公式即可得到结论.(1)解:如图,写出一个我们熟悉的数学公式:(a+b)2=a2+2ab+b2.故答案为:(a+b)2=a2+2ab+b2;(2)∵a+b=,ab=12,∴a2+b2=(a+b)2-2ab=63-24=39;(3)设8-x=a,x-2=b,∵长方形的两邻边分别是8-x,x-2,∴a+b=8-x+x-2=6,∵(8-x)2+(x-2)2=a2+b2=(a+b)2-2ab=62-2ab=20,∴ab=8,∴这个长方形的面积=(8-x)(x-2)=ab=8.【点睛】本题考查了因式分解的应用,完全平方公式,熟练掌握完全平方公式是解题的关键.5、 (1);(2).【解析】【分析】(1)根据单项式乘以多项式运算法则计算即可得答案;(2)根据多项式乘以多项式运算法则计算即可得答案.(1)==.(2)===.【点睛】本题考查整式的乘法,单项式乘以多项式,用单项式分别乘以多项式中的每一项,再把所得的积相加;多项式乘以多项式,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加;熟练掌握运算法则是解题关键.
相关试卷
这是一份冀教版七年级下册第八章 整式乘法综合与测试课后测评,共17页。试卷主要包含了的计算结果是,在下列运算中,正确的是,下列运算正确的是,计算等内容,欢迎下载使用。
这是一份2021学年第八章 整式乘法综合与测试测试题,共16页。试卷主要包含了已知是完全平方式,则的值为,下列计算正确的是.,下列计算正确的是,计算正确的结果是,在下列运算中,正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试课堂检测,共16页。试卷主要包含了下列计算正确的是,若,则的值为,计算得,下列运算正确的是等内容,欢迎下载使用。