北京课改版八年级下册第十四章 一次函数综合与测试课时练习
展开
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课时练习,共23页。试卷主要包含了点P在第二象限内,P点到x,已知一次函数与一次函数中,函数,点在等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),且y的值随着x的值的增大而减小,则m的值为( )
A. B. C.3 D.
2、如图,一次函数y=kx+b(k≠0)的图像经过点A(﹣1,﹣2)和点B(﹣2,0),一次函数y=2x的图像过点A,则不等式2x<kx+b≤0的解集为( )
A.x≤﹣2 B.﹣2≤x<﹣1 C.﹣2<x≤﹣1 D.﹣1<x≤0
3、已知点A(-2,y1)和B(-1,y2)都在直线y=-3x-1上,则y1,y2的大小关系是( )
A.y1>y2 B.y1<y2 C.y1=y2 D.大小不确定
4、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为( )
A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)
5、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
A.(-2,3)或(-2,-3) B.(-2,3)
C.(-3,2)或(-3,-2) D.(-3,2)
6、已知一次函数与一次函数中,函数、与自变量x的部分对应值分别如表1、表2所示:
表1:
x
…
0
1
…
…
3
4
…
表2:
x
…
0
1
…
…
5
4
3
…
则关于x的不等式的解集是( )
A. B. C. D.
7、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )
A.y=n(+0.6) B.y=n()+0.6
C.y=n(+0.6) D.y=n()+0.6
8、点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则( )
A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
10、若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过A(0,﹣1),B(1,1),则不等式kx+b﹣1<0的解集为( )
A.x<0 B.x>0 C.x>1 D.x<1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、(1)每一个含有未知数x和y的二元一次方程,都可以改写为______的形式,所以每个这样的方程都对应一个一次函数,于是也对应一条_____,这条直线上每个点的坐标(x,y)都是这个二元一次方程的解.
(2)从“数”的角度看,解方程组,相当于求_____为何值时对应的两个函数值相等,以及这两个函数值是______;从形的角度看,解方程组相当于确定两条相应直线的______.
2、元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒()件,则应付款(元)与商品数(件)之间的关系式,化简后的结果是______.
3、在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx>﹣x+3的解集是______.
4、函数的定义域是_____.
5、某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,若使用资费①更加划算,通讯时间x(分钟)的取值范围是_______.
三、解答题(5小题,每小题10分,共计50分)
1、已知函数y=(2-m)x+2n-3.求当m为何值时.
(1)此函数为一次函数?
(2)此函数为正比例函数?
2、甲、乙两人从同一点出发,沿着跑道训练400米速度跑,乙比甲先出发,并且匀速跑完全程,甲出发一段时间后速度提高为原来的3倍.设乙跑步的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲比乙晚出发 s,甲提速前的速度是每秒 米,m= ,n= ;
(2)当x为何值时,甲追上了乙?
(3)在甲提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过30米时,请你直接写出x的取值范围.
3、已知A、B两地之间有一条公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.
(1)甲车的速度为 千米/时,a的值为 .
(2)求乙车出发后,y与x之间的函数关系式.
4、如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=-x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.
(1)求点A、点B、点C的坐标,并求出△COB的面积;
(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;
(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.
5、如图,一次函数的图象与x轴、y轴分别交于点A、B(0,6),与正比例函数的图象交于点C(1,m).
(1)求一次函数的解析式;
(2)比较和的大小;
(3)点N为正比例函数图象上的点(不与C重合),过点N作NE⊥x轴于点E(n,0),交直线于点D,当=AB时,求点N的坐标.
-参考答案-
一、单选题
1、D
【解析】
【分析】
由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.
【详解】
解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),
∴m2-3=6,即m2=9,
解得:m=-3或m=3.
又∵y的值随着x的值的增大而减小,
∴m-2<0,
∴m<2,
∴m=-3.
故选:D.
【点睛】
本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.
2、B
【解析】
【分析】
根据图象知正比例函数y=2x和一次函数y=kx+b的图象的交点,即可得出不等式2x<kx+b的解集,根据一次函数y=kx+b的图象与x轴的交点坐标即可得出不等式kx+b≤0的解集是x≥-2,即可得出答案.
【详解】
解:∵由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(-1,-2),
∴不等式2x<kx+b的解集是x<-1,
∵一次函数y=kx+b的图象与x轴的交点坐标是B(-2,0),
∴不等式kx+b≤0的解集是x≥-2,
∴不等式2x<kx+b≤0的解集是-2≤x<-1,
故选:B.
【点睛】
本题考查一次函数和一元一次不等式的应用,能利用数形结合,找到不等式与一次函数图像的关系是解答此题的关键.
3、A
【解析】
【分析】
首先判定出一次函数的增减性为y随x的增大而减小,然后即可判断出y1,y2的大小关系.
【详解】
解:∵一次函数y=-3x-1中,k=-3<0,
∴y随x的增大而减小,
∵-2<-1,
∴y1>y2.
故选:A.
【点睛】
此题考查了一次函数的增减性,比较一次函数中函数值的大小,解题的关键是根据题意判断出一次函数的增减性.
4、C
【解析】
【分析】
点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.
【详解】
∵P点到x、y轴的距离分别是4、3,
∴点P的纵坐标绝对值为4、横坐标的绝对值为3,
∵点P在第二象限内,
∴点P的坐标为(-3,4),
故选:C.
【点睛】
本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.
5、A
【解析】
【分析】
根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
【详解】
解:∵点P在y轴左侧,
∴点P在第二象限或第三象限,
∵点P到x轴的距离是3,到y轴距离是2,
∴点P的坐标是(-2,3)或(-2,-3),
故选:A.
【点睛】
此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
6、D
【解析】
【分析】
用待定系数法求出和的表达式,再解不等式即可得出答案.
【详解】
由表得:,在一次函数上,
∴,
解得:,
∴,
,在一次函数上,
∴,
解得:,
∴,
∴为,
解得:.
故选:D.
【点睛】
本题考查用待定系数法求一次函数解析式以及解一元一次不等式,掌握待定系数法求解析式是解题的关键.
7、A
【解析】
【分析】
由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;
【详解】
解:因为用m元钱在网上书店恰好可购买100本书,
所以每本书的价格为元,
又因为每本书需另加邮寄费6角,
所以购买n本书共需费用y=n(+0.6)元;
故选:A.
【点睛】
本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.
8、C
【解析】
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
9、A
【解析】
【分析】
先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.
【详解】
解:∵一次函数y=mx+n的图象经过第一、二、四象限,
∴m0
∴y随x增大而减小,
∵1
相关试卷
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后复习题,共20页。试卷主要包含了点P在第二象限内,P点到x等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试达标测试,共23页。试卷主要包含了点P的坐标为,已知点,已知点P等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试当堂达标检测题,共25页。试卷主要包含了已知点A等内容,欢迎下载使用。