北京课改版七年级下册第六章 整式的运算综合与测试练习题
展开
这是一份北京课改版七年级下册第六章 整式的运算综合与测试练习题,共19页。试卷主要包含了下列运算正确的是,下列式子正确的是,下面说法正确的是,下列结论中,正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算中,结果正确的是( )A.B.C.D.2、小明发现一种方法来扩展数,并称这种方法为“展化”,步骤如下(以﹣11为例):①写出一个数:﹣11;②将该数加1,得到数:﹣10;③将上述两数依序合并在一起,得到第一次展化后的一组数:[﹣11,﹣10];④将[﹣11,﹣10]各项加1,得到[﹣10,﹣9],再将这两组数依序合并,可得第二次展化后的一组数:[﹣11,﹣10,﹣10﹣9];…按此步骤,不断展化,会得到一组数:[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8].则这组数的第255个数是( )A.﹣5 B.﹣4 C.﹣3 D.113、下列各式中,计算结果为x10的是( )A.x5+x5 B.x2•x5 C.x20÷x2 D.(x5)24、下列运算正确的是( )A. B.C. D.5、关于单项式﹣,下列说法中正确的是( )A.系数是﹣ B.次数是4 C.系数是﹣ D.次数是56、下列式子正确的是( )A. B.C. D.7、下列关于单项式2x2y的说法正确的是( )A.系数是1,次数是2 B.系数是2,次数是2C.系数是1,次数是3 D.系数是2,次数是38、下面说法正确的是( )A.倒数等于它本身的数是1B.是最大的负整数C.单项式的系数是,次数是2D.与是同类项9、下列结论中,正确的是( )A.单项式的系数是3,次数是2B.单项式m的次数是1,没有系数C.多项式x2+y2﹣1的常数项是1D.多项式x2+2x+18是二次三项式10、1883年,康托尔构造了一个分形,称作康托尔集,从数轴上单位长度线段开始,康托尔取走其中间三分之一而达到第一阶段,然后从每一个余下的三分之一线段中取走其中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点集就称做康托尔集,如图是康托尔集的最初几个阶段,当达到第n个阶段时,余下的所有线段的长度之和为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,两数在数轴上对应的点如图所示,化简的结果是___.2、若式子x2+16x+k是一个完全平方式,则k=______.3、如图,王老师把家里的密码设置成了数学问题.吴同学来王老师家做客,看到图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是________.账号:Mr.Wang's house王浩阳密码 4、如图,在我国南宋数学家杨辉所著的《详解九章算术》一书中,介绍了展开式的系数规律,称为“杨辉三角”.如第5行的5个数是1,4,10,4,1,恰好对应着展开式中的各项系数.利用上述规律计算:______.5、观察下面一列数,按某种规律在横线上填上适当的数:1,,,,____,_____,则第n个数为_____.三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:(5a2﹣3b)﹣3(a2﹣2b),其中a=﹣,b=.2、先化简,再求值:,其中,.3、(1)数学课堂上老师留了道数学题, 如图1,用式子表示空白部分的面积.甲,乙,丙,丁4名同学表示的式子是:甲:乙:丙:丁:4名同学中正确的学生是______;(填“甲”,“乙”,“丙”,“丁”)(2)如图2,有一块长为米,宽为米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化,已知两条道路的宽分别为米和米,求绿地的面积(用含a,b的式子来表示)4、计算题:①(﹣18)﹣(+3)﹣(﹣6)+(﹣12);②;③;④﹣32﹣23﹣[(﹣9)3+93]+(﹣1)2017;⑤先化简,再求值(2x2﹣2y2)﹣3(x2y+x2)+3(x2y+y2),其中x=﹣1,y=2.5、(1)﹣12×2÷(﹣5)﹣(﹣3)2÷[(﹣2)+(﹣1)3];(2)已知:(x2﹣xy+y2)﹣2A=3(3x2+3xy﹣y2),求A. ---------参考答案-----------一、单选题1、D【分析】所含字母相同,相同字母的指数也相同的单项式是同类项,根据同类项的概念与合并同类项的法则可判断A,C,D,再利用去括号的法则判断B,从而可得答案.【详解】解:不是同类项,故A不符合题意;故B不符合题意;不是同类项,故C不符合题意;故D符合题意;故选D【点睛】本题考查的是合并同类项,去括号,掌握“同类项的概念及合并同类项的法则,去括号的法则”是解本题的关键.2、B【分析】依据题意列举前3次展化结果寻找规律,再按照规律倒推出结果.【详解】解:依题意有-11第1次展化为[﹣11,﹣10],有2个数-11第2次展化为[﹣11,﹣10,﹣10,﹣9],有22个数-11第3次展化为[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8],有23个数由此可总结规律-11第n次展化为[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8,……],有2n个数∴-11第8次展化有28=256个数∴第255位为-11第8次展化的这组数的倒数第二位数第8次展化的倒数第2位数由第7次展化后的倒数第2位数加1所得同理第7次展化的倒数第2位数由第6次展化后的倒数第2位数加1所得以此类推第4次展化的倒数第2位数由第3次展化后的倒数第2位数加1所得故第8次展化的倒数第2位数由第3次展化后的倒数第2位数加5所得则-9+5=-4故选:B.【点睛】此题主要考查了数字变化规律,观察得出每次展化之间的关系是解题的关键.3、D【分析】利用合并同类项的法则,同底数幂的乘法的法则,同底数幂的除法的法则,幂的乘方的法则对各项进行运算即可.【详解】解:A、x5+x5=2x5,故A不符合题意;B、x2•x5=x7,故B不符合题意;C、x20÷x2=x18,故C不符合题意;D、(x5)2=x10,故D符合题意;故选D.【点睛】本题主要考查了合并同类项,同底数幂乘法,同底数幂除法,幂的乘方,熟知相关计算法则是解题的关键.4、D【分析】直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案.【详解】解:A、,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确;
故选:D.【点睛】本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键.5、C【分析】根据单项式的基本性质:单项式的次数(单项式中所以字母的指数的和)、系数(单项式中的数字因式)的定义解答即可.【详解】解:单项式的系数是,次数是.故选:C.【点睛】本题考查了单项式的次数和系数,深刻理解单项式的次数和系数的定义是解题关键.6、D【分析】根据去括号法则可直接进行排除选项.【详解】解:A、,原选项错误,故不符合题意;B、,原选项错误,故不符合题意;C、,原选项错误,故不符合题意;D、,原选项正确,故符合题意;故选D.【点睛】本题主要考查去括号,熟练掌握去括号法则是解题的关键.7、D【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而分析即可.【详解】解:单项式2x2y的系数为2,次数为3.故选:D.【点睛】本题考查了单项式,正确把握单项式的次数与系数的确定方法是解题的关键.8、B【分析】选项A根据倒数的定义判断即可,倒数:乘积是1的两数互为倒数;选项B根据整数与负数的定义判断即可,整数包括正整数,零,负整数;选项C根据单项式的定义判断即可,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;选项D根据同类项的定义判断即可,定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:.倒数等于它本身的数是,故本选项不合题意;.是最大的负整数,正确,故本选项符合题意;.单项式的系数是,次数是3,故本选项不合题意;.与所含字母相同,但相同字母的指数不相同,不是同类项,故本选项不合题意;故选:.【点睛】本题考查了单项式,倒数,有理数以及同类项,掌握相关定义是解答本题的关键.9、D【详解】根据单项式和多项式的相关定义解答即可得出答案.【分析】解:A、单项式的系数是,次数是3,原说法错误,故此选项不符合题意;B、单项式m的次数是1,系数也是1,原说法错误,故此选项不符合题意;C、多项式x2+y2﹣1的常数项是﹣1,原说法错误,故此选项不符合题意;D、多项式x2+2x+18是二次三项式,原说法正确,故此选项符合题意.故选D.【点睛】本题主要考查了单项式的定义,单项式的次数、系数的定义,多项式的定义及其次数的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.10、C【分析】根据题意具体表示前几个式子,然后总结归纳规律,即可得到答案.【详解】解:由题意得:第一阶段时,余下的线段的长度之和为, 第二阶段时,余下的线段的长度之和为, 第三阶段时,余下的线段的长度之和为, … 以此类推, 当达到第n个阶段时(n为正整数),余下的线段的长度之和为. 故选:C.【点睛】本题考查有理数的乘方的应用,图形类的变化规律,找出余下的线段的长度之和之间的联系,得出规律是解本题的关键.二、填空题1、【分析】根据数轴可得b<0<a,根据有理数的加法法则可得b−a<0,再计算绝对值后化简即可求解.【详解】解:由数轴可得,则,则.故答案为:.【点睛】本题考查了数轴,绝对值,解答本题的关键是根据a、b在数轴上的位置进行绝对值的化简.2、64【分析】根据完全平方公式解答即可.【详解】解:∵(x+8)2=x2+16x+64=x2+16x+k,∴k=64.故填64.【点睛】本题主要考查了完全平方公式,掌握完全平方公式的结构特点成为解答本题的关键.3、yang8888【分析】根据题中wifi密码规律确定出所求即可.【详解】解:阳阳故答案为:yang8888.【点睛】此题考查了同底数幂相乘和幂的乘方,熟练掌握运算法则是解本题的关键.4、【分析】根据杨辉三角得到第5行的5项系数是1,4,10,4,1,将变形为,即可得到,计算即可求解.【详解】解:由题意得=.故答案为:【点睛】本题考查了根据杨辉三角系数的特点进行计算,理解杨辉三角中各项系数的特点,并将原式进行正确变形是解题关键.5、 【分析】根据数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,所以第5个数是,第6个数是第n个数为.【详解】解:通过数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,第n个数为,那么第5项为:=,第6项的个数为:=.故答案是:,,【点睛】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.三、解答题1、2a2+3b,【解析】【分析】先去括号合并同类项,然后把a=﹣,b=代入计算即可.【详解】解:(5a2﹣3b)﹣3(a2﹣2b)=5a2﹣3b﹣3a2+6b= 2a2+3b,当a=﹣,b=时,原式===.【点睛】本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.2、,-12【解析】【分析】先去括号合并同类项,再把,代入计算.【详解】解:==,当,时,原式==-6-6=-12.【点睛】本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.3、(1)丙,丁;(2)【解析】【分析】(1)用长方形面积减去小路面积或通过平移把绿地拼成一个长方形,即可列出代数式;(2)类似(1)的方法列出代数式即可.【详解】解:(1)长方形的面积为:;两条小路的面积为:和,两条小路重合部分面积为:,故列式为;绿地拼在一起是长方形,两边分别为:,故列式为:;故答案为:丙,丁;(2)根据(1)的方法可求绿地的面积:,【点睛】本题考查了列代数式和整式的运算,解题关键是熟练运用整式运算法则进行计算.4、①﹣27;②﹣24;③2;④﹣18;⑤﹣x2+y2,3【解析】【分析】①将减法统一成加法,然后根据有理数加法交换律和加法结合律进行简便计算;②将除法统一成乘法,然后根据有理数乘法交换律和乘法结合律进行简便计算;③使用乘法分配律进行简便计算;④先算乘方,然后先算小括号里面的,再算括号外面的;⑤原式去括号,合并同类项进行化简,然后代入求值.【详解】解:①原式=﹣18+(﹣3)+6+(﹣12)=[(﹣18)+(﹣12)]+[(﹣3)+6]=﹣30+3=﹣27;②原式=﹣6×26××=[(﹣6)×]×[26×]=2×(﹣12)=﹣24;③原式=×48+×48﹣×48+×48=﹣44+56﹣36+26=2;④原式=﹣9﹣8﹣(﹣93+93)﹣1=﹣9﹣8﹣0﹣1=﹣18;⑤原式=2x2﹣2y2﹣3x2y﹣3x2+3x2y+3y2=﹣x2+y2,当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.【点睛】此题主要考查了有理数的混合运算,整式的加减—化简求值,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算);掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“−”号,去掉“−”号和括号,括号里的各项都变号)是解题关键.5、(1)9;(2)A=﹣4x2﹣5xy+2y2.【解析】【分析】(1)根据有理数的乘方运算、乘除运算以及加减运算即可求出答案.(2)根据等式的性质以及整式的加减运算法则即可求出答案.【详解】解:(1)原式=﹣12××(﹣)﹣9÷(﹣2﹣1)=6﹣9÷(﹣3)=6+3=9.(2)∵2A=(x2﹣xy+y2)﹣3(3x2+3xy﹣y2)=x2﹣xy+y2﹣9x2﹣9xy+3y2=﹣8x2﹣10xy+4y2,∴A=﹣4x2﹣5xy+2y2.【点睛】此题主要考查有理数的混合运算与整式的加减,解题的关键是熟知其运算法则.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试练习题,共15页。试卷主要包含了下列各式中,计算正确的是,下列运算正确的是,下列结论中,正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试一课一练,共17页。试卷主要包含了已知下列一组数,下列计算中,正确的是,下列式子正确的,观察下列各式,若,,则的值为等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试当堂达标检测题,共14页。试卷主要包含了下列式子,多项式+1的次数是,下列运算正确的是等内容,欢迎下载使用。