搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新沪科版九年级数学下册第26章概率初步达标测试试题(含解析)

    2022年最新沪科版九年级数学下册第26章概率初步达标测试试题(含解析)第1页
    2022年最新沪科版九年级数学下册第26章概率初步达标测试试题(含解析)第2页
    2022年最新沪科版九年级数学下册第26章概率初步达标测试试题(含解析)第3页
    还剩17页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第26章 概率初步综合与测试随堂练习题

    展开

    这是一份初中数学第26章 概率初步综合与测试随堂练习题,共20页。试卷主要包含了下列事件是必然事件的是,下列事件中,是必然事件的是等内容,欢迎下载使用。
    沪科版九年级数学下册第26章概率初步达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、以下事件为随机事件的是(    A.通常加热到100℃时,水沸腾B.篮球队员在罚球线上投篮一次,未投中C.任意画一个三角形,其内角和是360°D.半径为2的圆的周长是2、下列说法正确的是(  )A.调查“行云二号”各零部件的质量适宜采用抽样调查方式B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定3、下列说法正确的是(  )A.掷一枚质地均匀的骰子,掷得的点数为3的概率是B.一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D.在同一年出生的400个同学中至少会有2个同学的生日相同4、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是(    A. B. C. D.5、下列事件是必然事件的是(   )A.明天一定是晴天 B.购买一张彩票中奖C.小明长大会成为科学家 D.13人中至少有2人的出生月份相同6、若随意向如图所示的正方形内抛一粒石子,则石子落在阴影部分的概率是(  )A.1 B.1 C. D.17、下列事件中,是必然事件的是(  )A.如果a2b2,那么abB.车辆随机到达一个路口,遇到红灯C.2021年有366天D.13个人中至少有两个人生肖相同8、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为(  )A. B. C. D.9、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是(  )A. B. C. D.110、下列说法中正确的是(    A.“打开电视,正在播放《新闻联播》”是必然事件B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖C.想了解某市城镇居民人均年收入水平,宜采用抽样调查D.我区未来三天内肯定下雪第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的袋子中装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出黄球的频率稳定在0.30左右,则袋子中黄球的数量可能是 _____个.2、某商场举办有奖购物活动,购货满100元者发兑奖券一张,每张奖券获奖的可能性相同.在100张奖券中,设一等奖5个,二等奖10个,三等奖20个.若小李购货满100元,则她获奖的概率为 _____.3、某农场引进一批新稻种,在播种前做了五次发芽实验,每次任取800粒稻种进行实验.实验的结果如表所示:实验的稻种数n∕粒800800800800800发芽的稻种数m∕粒763757761760758发芽的频率0.9540.9460.9510.9500.948在与实验条件相同的情况下,估计种一粒这样的稻种发芽的概率为 _____(精确到0.01);如果该农场播种了此稻种2万粒,那么能发芽的大约有 _____万粒.4、在发展现代化农业的形势下,现有AB两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10030050010003000A出芽率0.990.940.960.980.97B出芽率0.990.950.940.970.96下面有三个推断:①当实验种子数量为100时,两种种子的出芽率均为0.99,所以AB两种新玉米种子出芽的概率一样;②随着实验种子数量的增加,A种子出芽率在 0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是_____________5、图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为6m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为 _____m2三、解答题(5小题,每小题10分,共计50分)1、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.在一次购物中,小明和小亮都想从“微信”“支付宝”“银行卡”三种支付方式中选一种方式进行支付,“微信”“支付宝”“银行卡”这三种支付方式分别用“A”“B”“C”表示,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.2、如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格ABC中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格DEF中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是      (2)若甲、乙均可在本层移动.①黑色方块所构拼图是中心对称图形的概率是      ②用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.3、如图,甲、乙两个完全相同的转盘均被分成3个面积相等的扇形,每个扇形中都标有相应的数字,同时转动两个转盘(当指针指在边界线上时视为无效,需重新转动转盘),当转盘停止后,记下甲、乙两个转盘中指针所指的数字.请用画树状图或列表的方法,求这两个数字之和为偶数的概率.4、落实“双减”政策,丰富课后服务,为了发展学生兴趣特长,梁鄂中学七年级准备开设(窗花剪纸)、(书法绘画)、(中华武术)、(校园舞蹈)四门选修课程(每位学生必须且只选其中一门),甲、乙两位同学分别随机选择其中一门选修课程参加学习.用列表法或画树状图法求:(1)甲、乙都选择(窗花剪纸)课程的概率;(2)甲、乙选择同一门课程的概率.5、根据公安部交管局下发的通知,春节前开展一次“一带一盔”安全守护行动,其中要求骑行摩托车、电动车需要佩戴头盔,某日交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:年龄x(岁)人数男性占比x<20450%20≤x<30m60%30≤x<402560%40≤x<50875%x≥503100%(1)统计表中m的值为         (2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“30≤x<40”部分所对应扇形的圆心角的度数为         (3)若从年龄在“x<20”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树状图的方法,求恰好抽到1名男性和1名女性的概率. -参考答案-一、单选题1、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.通常加热到100℃时,水沸腾是必然事件;B.篮球队员在罚球线上投篮一次,未投中是随机事件;C.任意画一个三角形,其内角和是360°是不可能事件;D.半径为2的圆的周长是是必然事件;故选:B【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、B【分析】分别对各个选项进行判断,即可得出结论.【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B.【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.3、D【分析】A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误.【详解】解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;故选D.【点睛】本题考察了概率.解题的关键与难点在于了解概率概念与求解.4、C【分析】用3的倍数的个数除以数的总数即为所求的概率.【详解】解:∵1到10的数字中是3的倍数的有3,6,9共3个,∴卡片上的数字是3的倍数的概率是故选:C.【点睛】本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.5、D【分析】必然事件是在一定条件下,一定会发生的事件;根据定义对选项进行判断,得出结果.【详解】解:A、B、C选项中的事件都是随机事件,不符合要求;D选项中13人中至少有2人的出生月份相同是必然事件,符合要求;故选D.【点睛】本题考查了必然事件.解题的关键在于正确理解必然事件与随机事件的定义.6、A【分析】设正方形ABCD的边长为a,然后根据石子落在阴影部分的概率即为阴影部分面积与正方形面积的比,由此进行求解即可.【详解】解:如图所示,设正方形ABCD的边长为a∵四边形ABCD是正方形,∴∠C=90°, ∴石子落在阴影部分的概率是故选A.【点睛】本题主要考查了几何概率,正方形的性质,扇形面积公式,解题的关键在于能够根据题意得到石子落在阴影部分的概率即为阴影部分面积与正方形面积的比.7、D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.【详解】解:如果a2b2,那么,原说法是随机事件,故A不符合题意;车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;2021年是平年,有365天,原说法是不可能事件,故C不符合题意;13个人中至少有两个人生肖相同,是必然事件,故D符合题意,故选:D.【点睛】本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.8、C【分析】从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可.【详解】解:∵装有7个只有颜色不同的球,其中4个黑球,∴从布袋中随机摸出一个球,摸出的球是黑球的概率=故选:C.【点睛】本题考查的是概率公式,熟知随机事件A的概率PA)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.9、C【分析】先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可.【详解】解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;P(中心对称图形)=故选:C.【点睛】本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键.10、C【分析】根据必然事件,随机事件的定义,判断全面调查与抽样调查,逐项分析判断即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】A. “打开电视,正在播放《新闻联播》”是随机事件,故该选项不正确,不符合题意;B. 某次抽奖活动中奖的概率为,说明每买100张奖券,不一定有一次中奖,故该选项不正确,不符合题意;C. 想了解某市城镇居民人均年收入水平,宜采用抽样调查,故该选项正确,符合题意;D. 我区未来三天内不一定下雪,故该选项不正确,不符合题意;故选C【点睛】本题考查了必然事件,随机事件,判断全面调查与抽样调查,掌握以上知识是解题的关键. 二、填空题1、6【分析】由题意直接根据黄球出现的频率和球的总数,可以计算出黄球的个数.【详解】解:由题意可得,20×0.30=6(个),即袋子中黄球的个数最有可能是6个.故答案为:6.【点睛】本题考查利用频率估计概率,解答本题的关键是明确题意,计算出黄球的个数.2、##【分析】根据题意在100张奖券中,奖项设置共有35个奖,根据概率公式求解即可【详解】解:根据题意在100张奖券中,奖项设置共有35个奖,若小李购货满100元,则她获奖的概率为故答案为:【点睛】本题考查了概率公式求概率,是解题的关键.3、0.95    1.9    【分析】(1)根据表格,可以观察出几组数据频率均在0.95附近,故可知发芽的概率为:0.95;(2)已知水稻发芽的概率为0.95,所以发芽数即为:总数×发芽率.【详解】解:由图可知,(1)测试的数据发芽频率均在0.95附近,故概率为:0.95;(2)由(1)可知,水稻发芽的概率为0.95,故发芽数约为:2×0.95=1.9(万).故答案为:(1)0.95;(2)1.9.【点睛】本题主要是从表格中提取所需数据,再利用概率进行计算,掌握概率的基础应用是解题的关键.4、②③【分析】大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,据此解答可得.【详解】①在大量重复试验时,随着试验次数的增加,可以用一个事件出现的概率估计它的概率,实验种子数量为100,数量太少,不可用于估计概率,故①推断不合理;②随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97,故②推断合理;③在同样的地质环境下播种,A 种子的出芽率约为0.97,B种子的出芽率约为0.96,种子的出芽率可能会高于种子,故③正确,故答案为:②③【点睛】此题考查利用频率估计概率,理解随机事件发生的频率与概率之间的关系是解题的关键.5、8.4【分析】首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.【详解】解:假设不规则图案面积为x m2由已知得:长方形面积为24m2根据几何概率公式小球落在不规则图案的概率为:当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:=0.35,解得x=8.4.估计不规则图案的面积大约为8.4 m2故答案为:8.4.【点睛】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高.三、解答题1、【分析】根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.【详解】解:画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为【点睛】本题考查了树状图法与列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.2、(1);(2)①;②【分析】(1)直接由概率公式求解即可;(2)①黑色方块所构拼图中是中心对称图形有两种情形,由概率公式求解即可;②画树状图,再由概率公式求解即可.【详解】解:(1)若乙固定在E处,黑色方块甲,可在方格ABC中移动,且当在AB处时,黑色方块构成的拼图是轴对称图形所以移动甲后黑色方块构成的拼图是轴对称图形的概率是(2)①甲、乙在本层移动,一共有 种情况,其中黑色方块所构拼图中是中心对称图形有两种情形:a、甲在B处,乙在F处;b、甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是②画树状图如图:由树状图可知,共有9个等可能的结果,黑色方块所构拼图是轴对称图形的结果有5个,∴黑色方块所构拼图是轴对称图形的概率=【点睛】本题考查了列表法与树状图法、轴对称图形、中心对称图形等知识;熟练掌握轴对称图形、中心对称图形,正确画出树状图是解题的关键.3、见解析,【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:画树状图如下:由树状图知,共有9种等可能结果,其中两个数字之和是偶数的有4种结果,(两个数字之和是偶数)【点睛】本题考查了利用列表法与树状图法求概率,根据列表法和树状图法展示所有可能的结果,再从中选出符合条件的结果是解题关键.4、(1) ;(2)【分析】(1)由题意先用列表法得出所有等可能的结果数,进而用甲、乙都选择(窗花剪纸)课程的情况数除以所有等可能的结果数即可;(2)由题意直接用甲、乙选择同一门课程的情况数除以所有等可能的结果数即可.【详解】解:(1)由题意列表, ABCDAA,AA,BA,CA,DBB,AB,BB,CB,DCC,AC,BC,CC,DDD,AD,BD,CD,D由图表可知共有16种等可能的情况数,其中甲、乙都选择(窗花剪纸)课程的情况数为1种,所以甲、乙都选择(窗花剪纸)课程的概率为.(2)由(1)图表可知共有16种等可能的情况数,其中甲、乙选择同一门课程的情况数为4种,所以甲、乙选择同一门课程的概率为.【点睛】本题考查列表法和画树状图法求概率,正确列表和画出树状图是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.5、(1)10(2)180°(3)见解析,【分析】(1)根据总数减去表格中其他数据即可求解;(2)根据年龄在“30≤x<40”的人数占总人数的比例乘以360°即可求解;(3)用列表法求概率即可.(1)故答案为:10(2)故答案为:(3)设两名男性用表示,两名女性用表示,根据题意,列表如下,     由上表可知,共有12种等可能的结果,符合条件的结果有8种,P(恰好抽到1名男性和1名女性)=【点睛】本题考查了求扇形统计图的圆心角的度数,求频数,根据列表法求概率,理解题意,掌握以上知识是解题的关键. 

    相关试卷

    沪科版九年级下册第26章 概率初步综合与测试课后作业题:

    这是一份沪科版九年级下册第26章 概率初步综合与测试课后作业题,共21页。试卷主要包含了下列事件中,属于随机事件的是,下列事件是必然事件的是等内容,欢迎下载使用。

    沪科版九年级下册第26章 概率初步综合与测试巩固练习:

    这是一份沪科版九年级下册第26章 概率初步综合与测试巩固练习,共18页。试卷主要包含了下列说法中正确的是,下列说法正确的是等内容,欢迎下载使用。

    初中数学第26章 概率初步综合与测试同步练习题:

    这是一份初中数学第26章 概率初步综合与测试同步练习题,共20页。试卷主要包含了下列事件是必然发生的事件是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map