【真题汇编】2022年山东省青岛市中考数学第二次模拟试题(含答案及详解)
展开
这是一份【真题汇编】2022年山东省青岛市中考数学第二次模拟试题(含答案及详解),共24页。试卷主要包含了已知点等内容,欢迎下载使用。
2022年山东省青岛市中考数学第二次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点与点关于y轴对称,则的值为( )A.5 B. C. D.2、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为( )A.(1,1) B.(﹣1,﹣1) C.(-1,1) D.(1,﹣1)3、如图,已知△ABC与△DEF位似,位似中心为点O,OA:OD=1:3,且△ABC的周长为2,则△DEF的周长为( )A.4 B.6 C.8 D.184、将正方体的表面分别标上数字1,2,3,并在它们的对面分别标上一些负数,使它的任意两个相对面的数字之和为0,将这个正方体沿某些棱剪开,得到以下的图形,这些图形中,其中的x对应的数字是﹣3的是( )A. B.C. D.5、如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是( )A.雷 B.锋 C.精 D.神6、下列格点三角形中,与右侧已知格点相似的是( )A. B.C. D.7、已知点、在二次函数的图象上,当,时,.若对于任意实数、都有,则的范围是( ).A. B. C.或 D.8、若方程有实数根,则实数a的取值范围是( )A. B.C.且 D.且9、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )A.50° B.65° C.75° D.80°10、根据以下程序,当输入时,输出结果为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知3m=a,3n=b,则33m+2n的结果是____.2、如图所示,已知直线,且这两条平行线间的距离为5个单位长度,点为直线上一定点,以为圆心、大于5个单位长度为半径画弧,交直线于、两点.再分别以点、为圆心、大于长为半径画弧,两弧交于点,作直线,交直线于点.点为射线上一动点,作点关于直线的对称点,当点到直线的距离为4个单位时,线段的长度为______.3、在中,DE∥BC,DE交边AB、AC分别于点D、E,如果与四边形BCED的面积相等,那么AD:DB的值为_______4、已知n<5,且关于x的方程x2﹣2x﹣2n=0两根都是整数,则n=___.5、如图是某个几何体的表面展开图,若围成几何体后,与点E重合的两个点是______.三、解答题(5小题,每小题10分,共计50分)1、如图,AB为⊙O的直径,C、D为圆上两点,连接AC、CD,且AC=CD,延长DC与BA的延长线相交于E点.(1)求证:△EAC∽△ECO;(2)若,求的值.2、如图,是的角平分线,在的延长线上有一点D.满足.求证:.3、先化简,再求值:,其中.4、如图,某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边点,选对岸正对的一棵树;②沿河岸直走有一树,继续前行到达处;③从处沿河岸垂直的方向行走,当到达树正好被树遮挡住的处时停止行走;④测得的长为米.根据他们的做法,回答下列问题:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.5、已知:如图,在中,(1)求证(2)如果,求的长. -参考答案-一、单选题1、A【分析】点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.【详解】解:由题意知:解得∴故选A.【点睛】本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.2、B【分析】分别过点和点作轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标【详解】如图,分别过点和点作轴于点,作轴于点,∴,∵四边形为菱形,∴点为的中点,∴点为的中点,∴,,∵,∴;由题意知菱形绕点逆时针旋转度数为:,∴菱形绕点逆时针旋转周,∴点绕点逆时针旋转周,∵,∴旋转60秒时点的坐标为.故选B【点睛】根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.3、B【分析】由与是位似图形,且知与的位似比是,从而得出周长:周长,由此即可解答.【详解】解:∵与是位似图形,且,与的位似比是.则周长:周长,∵△ABC的周长为2,∴周长故选:B.【点睛】本题考查了位似变换:位似图形的任意一对对应点与位似中心在同一直线上,它们到位似中心的距离之比等于相似比,位似是相似的特殊形式,位似比等于相似比,其对应的周长比等于相似比.4、A【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,求出各选项的x的值即可.【详解】解: A.x=-3B.x=-2C.x=-2D.x=-2故答案为:A【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5、D【分析】根据正方体的表面展开图的特征,判断相对的面即可.【详解】解:由正方体的表面展开图的特征可知:“学”的对面是“神”,故选:D.【点睛】本题考查了正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的关键.6、A【分析】根据题中利用方格点求出的三边长,可确定为直角三角形,排除B,C选项,再由相似三角形的对应边成比例判断A、D选项即可得.【详解】解:的三边长分别为:,,,∵,∴为直角三角形,B,C选项不符合题意,排除;A选项中三边长度分别为:2,4,,∴,A选项符合题意,D选项中三边长度分别为:,,,∴,故选:A.【点睛】题目主要考查相似三角形的性质及勾股定理的逆定理,理解题意,熟练掌握运用相似三角形的性质是解题关键.7、A【分析】先根据二次函数的对称性求出b的值,再根据对于任意实数x1、x2都有y1+y2≥2,则二次函数y=x2-4x+n的最小值大于或等于1即可求解.【详解】解:∵当x1=1、x2=3时,y1=y2,∴点A与点B为抛物线上的对称点,∴,∴b=-4;∵对于任意实数x1、x2都有y1+y2≥2,∴二次函数y=x2-4x+n的最小值大于或等于1,即,∴c≥5.故选:A.【点睛】本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其对称轴是直线:,顶点纵坐标是,抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.8、B【分析】若方程为一元二次方程,则有,,求解;若,方程为一元一次方程,判断有实数根,进而求解取值范围即可.【详解】解:若方程为一元二次方程,则有,解得且若,方程为一元一次方程,有实数根故选B.【点睛】本题考查了一元二次方程根的判别,一元一次方程的根.解题的关键在于全面考虑的情况.9、B【分析】根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.【详解】解:如图,根据题意得:BG∥AF,∴∠FAE=∠BED=50°,∵AG为折痕,∴ .故选:B【点睛】本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.10、C【分析】根据流程图所示顺序,逐框分析代入求值即可.【详解】解:当输入时,代入代入,则输出故选C【点睛】本题考查了程序流程图与代数式求值,正确代入求值是解题的关键.二、填空题1、a【分析】根据幂的乘方以及同底数幂的乘法解决此题.【详解】解:∵3m=a,3n=b,∴33m+2n=33m•32n=(3m)3•(3n)2=a3b2.故答案为:a3b2.【点睛】本题主要考查幂的乘方以及同底数幂的乘法的逆运算,熟练掌握幂的乘方以及同底数幂的乘法是解决本题的关键.2、或【分析】根据勾股定理求出PE=3,设OH=x,可知,DH=(x-3)或(3- x),勾股定理列出方程,求出x值即可.【详解】解:如图所示,过点作直线的垂线,交m、n于点D、E,连接,由作图可知,,,点到直线的距离为4个单位,即,,则,,设OH=x,可知,DH=(3- x),解得,,;如图所示,过点作直线的垂线,交m、n于点D、E,连接,由作图可知,,,点到直线的距离为4个单位,即,,则,,设OH=x,可知,DH=(x-3),解得,,;故答案为:或【点睛】本题考查了勾股定理和轴对称,解题关键是画出正确图形,会分类讨论,设未知数,根据勾股定理列方程.3、##【分析】由DE∥BC,可得△ADE∽△ABC,又由△ADE的面积与四边形BCED的面积相等,根据相似三角形的面积比等于相似比的平方,即可求得的值,然后利用比例的性质可求出AD:DB的值.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∵△ADE的面积与四边形BCED的面积相等,∴,∴,∴,∴.故答案为:.【点睛】此题考查了相似三角形的判定与性质.此题难度不大,解题的关键是注意相似三角形的面积比等于相似比的平方定理的应用与数形结合思想的应用.4、或或或【分析】先利用方程有两根求解结合已知条件可得再求解方程两根为结合两根为整数,可得为完全平方数,从而可得答案.【详解】解:关于x的方程x2﹣2x﹣2n=0有两根, x2﹣2x﹣2n=0, 而两个根为整数,则为完全平方数,或或或 解得:或或或 故答案为:或或或【点睛】本题考查的是一元二次方程根的判别式,利用公式法解一元二次方程,熟练的解一元二次方程是解本题的关键.5、A和C【分析】根据题意可知该几何体的展开图是四棱锥的平面展开图,找出重合的棱,即可找到与点E重合的两个点.【详解】折叠之后CD和DE重合为一条棱,C点和E点重合;AH和EF重合为一条棱,A点和E点重合.所以与点E重合的两个点是A点和C点.故答案为:A和C.【点睛】此题考查的是四棱锥的展开图,解决此题的关键是运用空间想象能力把展开图折成四棱锥,找到重合的点.三、解答题1、(1)见解析(2)【分析】(1)由题意可证得△AOC≌△DOC,从而可得对应边、对应角都相等,再由△ECO、△EDO的内角和定理,可证得,从而可得△EAC∽△ECO;(2)过点C作CF⊥EO,由,可设CF=3x,则可得OF=4x,OC=5x=OA,故可得AF=x,可求AC=x,,从而可得,即为的值.(1)证明:∵AB为⊙O的直径,C、D为圆上两点,连接AC、CD,且AC=CD,∴在△CAO与△CDO中:∴△CAO≌△CDO,∴,在△ECO与△EDO中,,,∴,在△EAC与△ECO中,,,∴△EAC∽△ECO.(2)解:过点C作CF⊥EO,∵,∴,设CF=3x,则OF=4x,∴OC==OA,∴AF=5x-4x= x,∴AC=,∴,由(1)得△EAC∽△ECO,∴,∴.【点睛】本题考查了三角形相似的判定及性质,三角函数的应用,解题的关键是作出辅助线,利用好数形结合的思想.2、见解析【分析】根据是的角平分线和,可得∠ABE=∠D,从而得到△ABE∽△CDE,进而得到 ,即可求证.【详解】证明:∵是的角平分线,∴∠ABE=∠CBD,∵,∴∠D=∠CBD,∴∠ABE=∠D,∵∠AEB=∠CED,∴△ABE∽△CDE,∴ ,∵,∴.【点睛】本题主要考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握有两对角相等的两个三角形相似是解题的关键.3、,【分析】先把所给分式化简,再把代入计算.【详解】解:原式====,当时,原式=.【点睛】本题考查了分式的计算和化简,解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.4、(1)5(2)证明见解析【分析】(1)由数学兴趣小组的做法可知河宽为5米.(2)由角边角即可证得和全等,再由对应边相等可知AB=DE.(1)由数学兴趣小组的做法可知,AB=DE,故河宽为5米(2)由题意知,BC=CD=20米又∵光沿直线传播∴∠ACB=∠ECD又∵在和中有∴∴AB=DE【点睛】本题考查了全等三角形的判定及性质,由数学兴趣小组的第三步:从处沿河岸垂直的方向行走,当到达树正好被树遮挡住的处时停止行走,得出∠ACB=∠ECD是解题的关键.5、(1)见解析(2)3【分析】(1)根据DE∥BC,可得 ,从而得到,进而得到 ,可证得△AEF∽△ACD,从而得到∠AFE=∠ADC,即可求证;(2)根据△AEF∽△ACD,可得 ,从而得到AF=12,即可求解.(1)证明:∵DE∥BC,∴ ,∵,∴,∴ ,∵∠A=∠A,∴△AEF∽△ACD,∴∠AFE=∠ADC,∴EF∥CD;(2)∵△AEF∽△ACD,,∴ ,∵ ,∴AF=12,∴DF=AD-AF=3.【点睛】本题主要考查了平行分线段成比例,相似三角形的判定和性质,熟练掌握平行分线段成比例,相似三角形的判定和性质定理是解题的关键.
相关试卷
这是一份【历年真题】2022年山东省青岛市中考数学历年真题汇总 卷(Ⅲ)(含答案详解),共28页。试卷主要包含了若,则代数式的值为,下列计算错误的是等内容,欢迎下载使用。
这是一份【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了有依次排列的3个数,下列计算正确的是等内容,欢迎下载使用。
这是一份【真题汇编】最新中考数学模拟真题练习 卷(Ⅱ)(含答案及详解),共20页。试卷主要包含了在平面直角坐标系xOy中,点A,下列四个实数中,无理数是,下列式中,与是同类二次根式的是等内容,欢迎下载使用。