【历年真题】2022年北京市燕山地区中考数学备考真题模拟测评 卷(Ⅰ)(含详解)
展开2022年北京市燕山地区中考数学备考真题模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知关于x,y的方程组和的解相同,则的值为( )
A.1 B.﹣1 C.0 D.2021
2、若,则的值是( )
A. B.0 C.1 D.2022
3、为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》、《新中国史》、《改革开放史》、《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为( )
A. B. C. D.1
4、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )m.
A. B. C. D.200
5、下列说法中,不正确的是( )
A.是多项式 B.的项是,,1
C.多项式的次数是4 D.的一次项系数是-4
6、某商品原价为 200 元,连续两次平均降价的百分率为 a ,连续两次降价后售价为 148 元, 下面所列方程正确的是 ( )
A.200(1 a)2 148 B.200(1 a)2 148
C.200(1 2a)2 148 D.200(1 a 2) 148
7、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )
A.轴 B.轴
C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)
8、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A. B. C. D.
9、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式( )
A.10x﹣5(20﹣x)≥125 B.10x+5(20﹣x)≤125
C.10x+5(20﹣x)>125 D.10x﹣5(20﹣x)>125
10、的相反数是( )
A. B. C. D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、深圳某商场为吸引顾客,设置了一种游戏,其规则如下:在一个不透明的纸箱中装有红球和白球共10个,这些球除颜色外都相同.凡参与游戏的顾客从纸箱中随机摸出一个球,如果摸到红球就可免费得到一个吉祥物,摸到白球没有吉祥物.据统计,参与这种游戏的顾客共有5000人,商场共发放了吉祥物1500个.则该纸箱中红球的数量约有 _____个.
2、如图,C是线段AB延长线上一点,D为线段BC上一点,且,E为线段AC上一点,,若,则_________.
3、将去括号后,方程转化为_______.
4、已知一个多边形的内角和比外角和多180°,则它的边数为______.
5、如图,在△ABC中,AB=12,BC=15,D为BC上一点,且BD=BC,在AB边上取一点E,使以B,D,E为顶点的三角形与△ABC相似,则BE=_____.
三、解答题(5小题,每小题10分,共计50分)
1、计算:(3﹣2)×+(﹣)2.
2、在平面直角坐标系xOy中,抛物线上有两点和点.
(1)用等式表示a与b之间的数量关系,并求抛物线的对称轴;
(2)当时,结合函数图象,求a的取值范围.
3、已知:如图,E为△ABC的外角平分线上的一点,AE∥BC,,求证:
(1)△ABC是等腰三角形;
(2).
4、如图,已知AB=AC,∠BEF=∠CFH,BE=CF,M是EH的中点.求证:FM⊥EH.
5、计算:
-参考答案-
一、单选题
1、B
【分析】
联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求.
【详解】
解:联立得:,
解得:,
则有,
解得:,
∴,
故选:B.
【点睛】
此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值.
2、C
【分析】
先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.
【详解】
解:∵,
∴a-2=0,b+1=0,
∴a=2,b=-1,
∴=,
故选C.
【点睛】
本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.
3、A
【分析】
直接根据概率公式求解即可.
【详解】
解:由题意得,他恰好选到《新中国史》这本书的概率为,
故选:A.
【点睛】
本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
4、B
【分析】
连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可.
【详解】
解:连接BD,如下图所示:
与所对的弧都是.
.
所对的弦为直径AD,
.
又,
为等腰直角三角形,
在中,,
由勾股定理可得:.
故选:B.
【点睛】
本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.
5、C
【分析】
根据多项式的定义及项数、次数定义依次判断.
【详解】
解:A. 是多项式,故该项不符合题意;
B. 的项是,,1,故该项不符合题意;
C. 多项式的次数是5,故该项符合题意;
D. 的一次项系数是-4,故该项不符合题意;
故选:C.
【点睛】
此题考查了多项式的定义及项数的定义、次数的定义,正确掌握多项式的各定义是解题的关键.
6、B
【分析】
第一次降价后价格为,第二次降价后价格为整理即可.
【详解】
解:第一次降价后价格为
第二次降价后价格为
故选B.
【点睛】
本题考查了一元二次方程的应用.解题的关键在于明确每次降价前的价格.
7、C
【分析】
利用成轴对称的两个点的坐标的特征,即可解题.
【详解】
根据A点和B点的纵坐标相等,即可知它们的对称轴为.
故选:C.
【点睛】
本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.
8、C
【分析】
由数轴可得: 再逐一判断的符号即可.
【详解】
解:由数轴可得:
故A,B,D不符合题意,C符合题意;
故选C
【点睛】
本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.
9、D
【分析】
根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.
【详解】
解:由题意可得,
10x-5(20-x)>125,
故选:D.
【点睛】
本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.
10、D
【分析】
根据只有符号不同的两个数是互为相反数解答即可.
【详解】
解:的相反数是3,
故选D.
【点睛】
本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
二、填空题
1、3
【分析】
先求出得到吉祥物的频率,再设纸箱中红球的数量为x个,根据题意列出方程,解之即可.
【详解】
解:由题意可得:
参与该游戏可免费得到吉祥物的频率为=,
设纸箱中红球的数量为x个,
则,
解得:x=3,
所以估计纸箱中红球的数量约为3个,
故答案为:3.
【点睛】
本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
2、3
【分析】
设BD=a,AE=b,则CD=2a,CE=2b,根据AB=AE+BE=AE+DE-BD代入计算即可.
【详解】
设BD=a,AE=b,
∵,,
∴CD=2a,CE=2b,
∴DE=CE-CD=2b-2a=2即b-a=1,
∴AB=AE+BE=AE+DE-BD=2+b-a=2+1=3,
故答案为:3.
【点睛】
本题考查了线段的和与差,正确用线段的和差表示线段是解题的关键.
3、
【分析】
根据去括号法则解答即可.
【详解】
解:原方程去括号,得:.
故答案为:.
【点睛】
本题考查了一元一次方程的解法,熟练掌握一元一次方程的解题步骤是解答本题的关键.去括号时,一是注意不要漏乘括号内的项,二是明确括号前的符号.
4、5
【分析】
设边数为n,由题意知多边形的内角和为,用边数表示为计算求解即可.
【详解】
解:设边数为
∵多边形的外角和为
∴多边形的内角和为
∴
解得
故答案为:5.
【点睛】
本题考查了多边形的内角和与外角和.解题的关键在于求解多边形的内角和.
5、4或
【分析】
以B,D,E为顶点的三角形与△ABC相似,则存在两种情况,即△BDE∽△BCA,也可能是△BDE∽△BAC,应分类讨论,求解.
【详解】
解:如图,DE//BC
①当∠AED=∠C时,即DE∥AC
则△BDE∽△BCA,
∴
∵BD=BC,
∴
∴
②当∠BED=∠C时,△BED∽△BCA
∴,即
∴
综上,BE=4或
故答案为4或
【点睛】
此题考查了相似三角形的性质,会利用相似三角形求解一些简单的计算问题.
三、解答题
1、﹣1
【分析】
首先计算二次根式的乘法,利用完全平方公式计算,最后合并同类二次根式.
【详解】
解:原式=3﹣6+(2+3﹣2),
=3﹣6+5﹣2,
=﹣1.
【点睛】
本题主要考查了二次根式的乘法,完全平方公式,合并同类项,熟练运算法则和完全平方公式是解决本题的关键.
2、
(1)b=4a,-2
(2)或.
【分析】
(1)将(-1,0)代入函数解析式可得,则抛物线对称轴为直线.
(2)由点B坐标可得AB所在直线为,过点B作轴交x轴于点C,可得AB为等腰直角三角形的斜边,从而可得点B当时和时点B的坐标为(2,3)或(4,3)或(-4,-3)或(-6,-5),再分类讨论抛物线开口向上或向下求解.
(1)
将(-1,0)代入得,
∴,
∴抛物线对称轴为直线.
(2)
∵点B坐标为,
∴点B所在直线为,
∴点A在直线上,
过点B作轴交x轴于点C,
则,,
∴AB为等腰直角三角形的斜边,
∴当时,,当时,,
∴或,
∴点B坐标为(2,3)或(4,3)或或,
当时,抛物线开口向上,
∵抛物线经过点(-1,0),对称轴为直线,
∴抛物线经过点(-3,0),
∴抛物线开口向上时,抛物线不经过,,
将(2,3)代入得,
解得,
将(4,5)代入得,
解得,
∴.
时,抛物线开口向下,抛物线不经过,,
将代入得,
解得,
将代入得,
解得,
∴,
综上所述,或.
【点睛】
本题考查了抛物线与系数的关系,对称轴,抛物线的解析式,一次函数与二次函数的交点,熟练掌握抛物线的性质,灵活运用分类思想,待定系数法是解题的关键.
3、
(1)见解析
(2)见解析
【分析】
(1)由AE//BC可得,由AE平分得,从而,故可得结论;
(2)根据SAS证明即可证明AF=CE.
(1)
∵AE//BC
∴
∵AE平分
∴
∴
∴,即△ABC是等腰三角形;
(2)
由(1)可得,
∵
∴
∴.
【点睛】
本题主要考查了等腰三角形的判定,全等三角形的判断与性质,能判断出等角对等边是解答本题的关键.
4、见解析
【分析】
根据等腰三角形的性质可求∠B=∠C,根据ASA可证△BEF≌△CFH,根据全等三角形的性质可求EF=FH,再根据等腰三角形的性质可证FM⊥EH.
【详解】
解:证明:∵AB=AC,
∴∠B=∠C,
在△BEF与△CFH中,
,
∴△BEF≌△CFH(ASA),
∴EF=FH,
∵M是EH的中点,
∴FM⊥EH.
【点睛】
本题考查了全等三角形的判定与性质,等腰三角形的性质,关键是根据ASA证明△BEF≌△CFH.
5、
【分析】
直接利用二次根式的性质化简进而得出答案.
【详解】
解:
【点睛】
此题主要考查了二次根式的乘除运算, 正确化简二次根式是解题关键.
【历年真题】2022年河北秦皇岛市中考数学备考真题模拟测评 卷(Ⅰ)(含详解): 这是一份【历年真题】2022年河北秦皇岛市中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共21页。试卷主要包含了下列说法正确的是,分式方程有增根,则m为等内容,欢迎下载使用。
【真题汇总卷】2022年北京市燕山地区中考数学模拟真题测评 A卷(含答案详解): 这是一份【真题汇总卷】2022年北京市燕山地区中考数学模拟真题测评 A卷(含答案详解),共25页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解): 这是一份【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共24页。试卷主要包含了若,则的值是,如图,在中,,,则的值为,下列式中,与是同类二次根式的是,下列命题中,真命题是等内容,欢迎下载使用。