![2022年京改版七年级数学下册第四章一元一次不等式和一元一次不等式组定向训练试题(含解析)第1页](http://m.enxinlong.com/img-preview/2/3/12675281/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版七年级数学下册第四章一元一次不等式和一元一次不等式组定向训练试题(含解析)第2页](http://m.enxinlong.com/img-preview/2/3/12675281/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版七年级数学下册第四章一元一次不等式和一元一次不等式组定向训练试题(含解析)第3页](http://m.enxinlong.com/img-preview/2/3/12675281/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题
展开
这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试同步达标检测题,共20页。试卷主要包含了如果a>b,下列各式中正确的是,若m<n,则下列各式正确的是等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在数轴上表示不等式组﹣1<x≤3,正确的是( )A. B.C. D.2、下列变形中,错误的是( )A.若3a+5>2,则3a>2-5 B.若,则C.若,则x>﹣5 D.若,则3、若a>b,则( )A.a﹣1≥b B.b+1≥a C.2a+1>2b+1 D.a﹣1>b+14、不等式的解集在数轴上表示正确的是( )A. B.C. D.5、如果a>b,下列各式中正确的是( )A.﹣2021a>﹣2021b B.2021a<2021bC.a﹣2021>b﹣2021 D.2021﹣a>2021﹣b6、若m<n,则下列各式正确的是( )A.﹣2m<﹣2n B. C.1﹣m>1﹣n D.m2<n27、如果a<0,b>0,a+b>0,那么下列关系正确的是( )A.-a>b>-b>a B.b>-a>a>-b C.b>-a>-b>a D.-a>b>a>-b8、已知x=2不是关于x的不等式2x﹣m>4的整数解,x=3是关于x的不等式2x﹣m>4的一个整数解,则m的取值范围为( )A.0<m<2 B.0≤m<2 C.0<m≤2 D.0≤m≤29、如果关于x的不等式组有且只有3个奇数解,且关于y的方程3y+6a=22-y的解为非负整数,则符合条件的所有整数a的积为( )A.-3 B.3 C.-4 D.410、如果a<b,c<0,那么下列不等式成立的是( )A.a+c<b B.a﹣c>b﹣cC.ac+1<bc+1 D.a(c﹣2)<b(c﹣2)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若a>0,则关于x的不等式ax>b的解集是________;若a<0,则关于x的不等式以ax>b的解集是_______.2、a,b两个实数在数轴上的对应点如图所示:用“<”或“>”填空:(1)a______b;(2)_____;(3)______0;(4)______0;(5)______;(6)______a.3、全国文明城市创建期间,某校组织开展“垃圾分类”知识竞赛,共有25道题.答对一题记4分,答错(或不答)一题记﹣2分.小明参加本次竞赛得分要超过60分,他至少要答对 _____道题.4、不等式组的解集为_______.5、不等式4x﹣3≤2x+1的非负整数解的和是 _____.三、解答题(5小题,每小题10分,共计50分)1、解下列不等式(组):(1)(2)2、解不等式组并把它的解集在数轴上表示出来 3、解不等式组,并把解集表示在数轴上.4、解不等式组:(1)(2)5、如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程的解为,不等式组的解集为,因为,所以称方程为不等式组的关联方程.(1)在方程①,②;③中,不等式组的关联方程是_________(填序号)(2)若不等式组的一个关联方程的解是整数,且这个关联方程是,则常数_________.(3)①解两个方程:和②是否存在整数m,使得方程和都是关于x的不等式组的关联方程?若存在,直接写出所有符合条件的整数m的值;若不存在,请说明理由. ---------参考答案-----------一、单选题1、C【解析】【分析】把不等式组的解集在数轴上表示出来即可.【详解】解:,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示不等式的解集,解题的关键是熟知“小于向左,大于向右”的法则.2、B【解析】【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A、不等式的两边都减5,不等号的方向不变,故A不符合题意;B、不等式的两边都乘以,不等号的方向改变得到,故B符合题意;C、不等式的两边都乘以(﹣5),不等号的方向改变,故C不符合题意;D、不等式的两边都乘以同一个正数,不等号的方向不变,故D不符合题意;故选:B.【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.3、C【解析】【分析】举出反例即可判断A、B、D,根据不等式的性质即可判断C.【详解】解:A、若a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、若a=3,b=1,a>b,但是b+1<a,不符合题意;C、∵a>b,∴2a+1>2b+1,符合题意;D、若a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.【点睛】此题考查不等式的性质,对性质的理解是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.4、A【解析】【分析】先解不等式,再利用数轴的性质解答.【详解】解:解得,∴不等式的解集在数轴上表示为:故选:A.【点睛】此题考查解不等式及在数轴上表示不等式的解集,正确解不等式及掌握数轴的性质是解题的关键.5、C【解析】【分析】根据不等式的性质即可求出答案.【详解】解:A、∵a>b,∴−2021a<−2021b,故A错误;B、∵a>b,∴2021a>2021b,故B错误;C、∵a>b,∴a﹣2021>b﹣2021,故C正确;D、∵a>b,∴2021﹣a<2021﹣b,故D错误;故选:D.【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.6、C【解析】【分析】根据不等式的基本性质逐项判断即可.【详解】解:A:∵m<n,∴﹣2m>﹣2n,∴不符合题意;B:∵m<n,∴,∴不符合题意;C:∵m<n,∴﹣m>﹣n,∴1﹣m>1﹣n,∴符合题意;D: m<n,当时,m2>n2,∴不符合题意;故选:C.【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.7、B【解析】【分析】根据有理数的大小和不等式的性质判断即可;【详解】∵a<0,b>0,a+b>0,∴,∴;故选B.【点睛】本题主要考查了有理数大小比较和不等式的性质,准确分析判断是解题的关键.8、B【解析】【分析】由2x-m>4得x>,根据x=2不是不等式2x-m>4的整数解且x=3是关于x的不等式2x-m>4的一个整数解得出≥2、<3,解之即可得出答案.【详解】解:由2x-m>4得x>,∵x=2不是不等式2x-m>4的整数解,∴≥2,解得m≥0;∵x=3是关于x的不等式2x-m>4的一个整数解,∴<3,解得m<2,∴m的取值范围为0≤m<2,故选:B.【点睛】本题主要考查了一元一次不等式的整数解,解题的关键是根据不等式整数解的情况得出关于m的不等式.9、A【解析】【分析】先求解不等式组,根据解得范围确定的范围,再根据方程解的范围确定的范围,从而确定的取值,即可求解.【详解】解:由关于x的不等式组解得∵关于x的不等式组有且只有3个奇数解∴,解得关于y的方程3y+6a=22-y,解得∵关于y的方程3y+6a=22-y的解为非负整数∴,且为整数解得且为整数又∵,且为整数∴符合条件的有、、符合条件的所有整数a的积为故选:A【点睛】本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键.10、A【解析】【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.二、填空题1、 【解析】【分析】根据不等式的性质,两边同时除以一个正数,不等号方向不变;两边同时除以一个负数,不等号方向改变,由此即可得出解集.【详解】解:当时,,两边同时除以a可得:;当时,,两边同时除以a可得:;故答案为:①;②.【点睛】题目主要考查根据不等式的基本性质求不等式解集,熟练掌握不等式的基本性质是解题关键.2、 > < < > < <【解析】【分析】首先观察数轴,得到b<0<a且|b|>|a|,进一步利用加减法计算方法和绝对值的意义解答即可.【详解】解:(1)a>b;(2)|a|<|b|;(3)a+b<0;(4)a-b>0;(5)a+b<a-b;(6)ab<a.故答案为:(1)>;(2)<;(3)<;(4)>;(5)<;(6)<.【点睛】本题考查了利用数轴、绝对值的意义以及有理数的加减法计算方法解决问题.3、19【解析】【分析】设小明答对x道题,则答错(或不答)(25-x)道题,利用总得分=4×答对题目数-2×答错(或不答)题目数,结合小明参加本次竞赛得分要超过60分,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:设小明答对x道题,则答错(或不答)(25-x)道题,依题意得:4x-2(25-x)>60,解得:x>.又∵x为正整数,∴x可以取的最小值为19.故答案为:19.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.4、【解析】【分析】先分别求出每一个不等式的解集,然后再根据“同大取大、同小取小、大小小大中间找、大大小小找不到”确定不等式组的解集即可.【详解】解:由,得:,由,得:,∴不等式组的解集为.故填:.【点睛】本题主要考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.5、3【解析】【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1得出不等式的解集,从而得出答案.【详解】解:4x﹣3≤2x+1移项,得:4x﹣2x≤1+3,合并同类项,得:2x≤4,系数化为1,得:x≤2,∴不等式的非负整数解为0、1、2,∴不等式的非负整数解的和为0+1+2=3,故答案为:3.【点睛】本题主要考查了一元一次不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.三、解答题1、(1)x<;(2)1≤x<3【解析】【分析】(1)去括号,移项合并,系数化为1即可求解;(2)分别求出各不等式的解集,再求出其公共解集即可.【详解】解:(1)去括号得,x-1>6x+18,移项合并同类项得:5x<-19,系数化为1得:x<;(2),由①得,x≥1,由②得,x<3,故不等式组的解集为:1≤x<3.【点睛】本题考查了解一元一次不等式,以及一元一次不等式组,熟练掌握求不等式解集的步骤是解答此题的关键.2、图见解析【解析】【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后在数轴上表示出不等式组的解集即可.【详解】解:解不等式①得:,解不等式②得:,∴不等式组的解集为:,数轴上表示解集为:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式组的解集,解题的关键在于能够熟练掌握求不等式组的解集的方法.3、<x<8.【解析】【分析】先分别解出两个不等式,再求出公共解即可.【详解】解:解不等式①,得x<8.解不等式②,得x>.∴等式组的解集是<x<8,不等式的解集在数轴上表示如图:.【点睛】本题考查一元一次不等式组的解法,求两个不等式的公共解可以借助数轴求公共部分,也可借助口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”求公共部分.4、(1)-1<x<2;(2)≤x<3.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)解不等式x-3(x-2)<8,得:x>-1,解不等式x-1<3-x,得:x<2,则不等式组的解集为-1<x<2;(2)解不等式2x-3<6-x,得:x<3,解不等式1-4x≤5x-2,得:x≥,则不等式组的解集为≤x<3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5、(1)③;(2)2;(3)①;;②符合条件的整数m为:4、5、6.【解析】【分析】(1)分别解不等式组和各一元一次方程,再根据“关联方程”的定义即可判断;(2)解不等式组得出其整数解,再写出以此整数解为解的一元一次方程即可得;(3)①根据解一元一次方程的步骤:先去分母,然后去括号,再合并同类项,系数化为1即可;②解不等式组得出:,由①得:和是不等式组的整数解,根据不等式组整数解的确定可得答案.【详解】解:(1)解不等式组解得:,解①得:,不在内,故①是不等式组的关联方程;解②得:,不在内,故②不是不等式组的关联方程;解③得:,在内,故③是不等式组的关联方程;故答案为:③;(2)解不等式组解得:,因此不等式组的整数解为:,将代入关联方程,可得:,解得:.故答案为:.(3)①解,去分母得:,解得:;,去分母得:,去分母合并同类项得:,解得:;②不等式组,解得:,由题意,和是不等式组的整数解,∴,解得:,∴m的取值范围为:∴所有符合条件的整数m为:4、5、6.【点睛】本题主要考查解一元一次不等式和一元一次方程,理解并掌握“关联方程”的定义和解一元一次不等式、一元一次方程的方法是解题的关键.
相关试卷
这是一份北京课改版七年级下册第六章 整式的运算综合与测试习题
这是一份七年级下册第八章 因式分解综合与测试课时作业,共15页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步练习题,共16页。试卷主要包含了能利用进行因式分解的是等内容,欢迎下载使用。