高中数学人教版新课标A必修33.1.1随机事件的概率课时作业
展开第四十九讲 随机事件的概率
班级________ 姓名________ 考号________ 日期________ 得分________
一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)
1.从12个同类产品中(其中有10个正品,2个次品),任意抽取3个,下列事件是必然事件的是( )
A.3个都是正品 B.至少有一个是次品
C.3个都是次品 D.至少有一个是正品
解析:A、B是随机事件,C是不可能事件.
答案:D
2.从1,2,…,9中任取两数,其中:
①恰有一个偶数和恰有一个奇数;②至少有一个是奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.
在上述事件中,是对立事件的是( )
A.① B.②④
C.③ D.①③
解析:从1,2,…,9中任取2个数字包括一奇一偶、二奇、二偶共三种互斥事件,所以只有③中的两个事件才是对立的.
答案:C
3.某城市2009年的空气质量状况如下表所示:
污染 指数T | 30 | 60 | 100 | 110 | 130 | 140 |
概率P |
空气污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染.该城市2009年空气质量达到良好或优的概率为( )
A. B.
C. D.
解析:良与优是彼此互斥的,故空气质量达到良或优的概率为P=++=.
答案:A
4.在一次随机试验中,彼此互斥的事件A、B、C、D的概率分别为0.2、0.2、0.3、0.3,则下列说法正确的是( )
A.A+B与C是互斥事件,也是对立事件
B.B+C与D是互斥事件,也是对立事件
C.A+C与B+D是互斥事件,但不是对立事件
D.A与B+C+D是互斥事件,也是对立事件
解析:由于A,B,C,D彼此互斥,且A+B+C+D是一个必然事件,故其事件的关系可由如图所示的韦恩图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.
答案:D
5.(精选考题·青岛质检)同时掷两颗骰子,得到点数和为6的概率是( )
A. B.
C. D.
解析:基本事件数是36,而“点数和为6”包含5个基本事件,即(1,5),(5,1),(2,4),(4,2),(3,3),所以“点数和为6”概率为,故选B.
答案:B
6.设集合A=B={1,2,3,4,5,6},分别从集合A和B中随机取数x和y,确定平面上的一个点P(x,y),我们记“点P(x,y)满足条件x2+y2≤16”为事件C,则C的概率为( )
A. B.
C. D.
解析:分别从集合A和B中随机取数x和y,得到(x,y)总的可能数有6×6=36种情况,满足x2+y2≤16的(x,y)有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)这8种情况,则所求概率为P(C)==,故选A.
答案:A
二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)
7.甲、乙两人下棋,甲获胜的概率为0.3,两人下成和棋的概率为0.5,那么甲不输的概率是________.
解析:P=0.3+0.5=0.8.
答案:0.8
8.为维护世界经济秩序,我国在亚洲经济论坛期间积极倡导反对地方贸易保护主义,并承诺包括汽车在内的进口商品将最多在5年内把关税全部降低到世贸组织所要求的水平,其中21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年关税达到要求,其余进口商品将在3年或3年内达到需要,则进口汽车在不超过4年的时间内关税达到要求的概率为________.
解析:解法一:设“进口汽车恰好4年关税达到要求”为事件A,“不到4年达到要求”为事件B,则“进口汽车在不超过4年的时间关税达到要求”是事件A+B,而A、B互斥,
∴P(A+B)=P(A)+P(B)
=0.18+(1-0.21-0.18)=0.79.
解法二:设“进口汽车在不超过4年的时间内关税达到要求”为事件M,则为“进口汽车恰好5年关税达到要求”,所以
P(M)=1-P()=1-0.21=0.79.
答案:0.79
9.(精选考题·浙江模拟)一个口袋中装有大小相同的2个黑球和3个白球,从中摸出1个球,放回后再摸出1个球,则2球恰好颜色不同的概率为________.
答案:
10.(精选考题·山东济南调研)甲、乙两人玩游戏,规则如流程框图所示,则甲胜的概率为________.
解析:甲胜:取出两个球为同色球,则
P==.
答案:
三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)
11.国家射击队的队员为在精选考题年亚运会上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次,命中7~10环的概率如下表所示:
命中环数 | 10环 | 9环 | 8环 | 7环 |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求该射击队员射击一次
(1)射中9环或10环的概率;
(2)至少命中8环的概率;
(3)命中不足8环的概率.
解:记事件“射击一次,命中k环”为Ak(k∈N,k≤10),则事件Ak彼此互斥.
(1)记“射击一次,射中9环或10环”为事件A,那么当A9,A10之一发生时,事件A发生,由互斥事件的概率加法公式得
P(A)=P(A9)+P(A10)=0.32+0.28=0.60.
(2)设“射击一次,至少命中8环”的事件为B,那么当A8,A9,A10之一发生时,事件B发生.
由互斥事件的概率加法公式得
P(B)=P(A8)+P(A9)+P(A10)
=0.18+0.28+0.32=0.78.
(3)由于事件“射击一次,命中不足8环”是事件B:“射击一次,至少命中8环”的对立事件,即表示事件“射击一次,命中不足8环”,根据对立事件的概率公式得
P()=1-P(B)=1-0.78=0.22.
12.某省是高中新课程改革实验省份之一,按照规定每个学生都要参加学业水平考试,全部及格才能毕业,不及格的可进行补考.某校有50名同学参加物理、化学、生物水平测试补考,已知只补考物理的概率为,只补考化学的概率为,只补考生物的概率为.随机选出一名同学,求他不止补考一门的概率.
解:设“不止补考一门”为事件E,“只补考一门”为事件F,“只补考物理”为事件A,则P(A)=,“只补考化学”为事件B,则P(B)=,“只补考生物”为事件C,则P(C)=.这三个事件为互斥事件,所以P(F)=P(A∪B∪C)=P(A)+P(B)+P(C)==0.6.
又因为事件E和事件F互为对立事件.
所以P(E)=1-P(F)=1-0.6=0.4.
即随机选出一名同学,他不止补考一门的概率为0.4.
13.(精选考题·临沂模拟)将甲、乙两颗骰子先后各抛一次,a、b分别表示抛掷甲、乙两颗骰子所出现的点数.
(1)若点P(a,b)落在不等式组x>0,y>0,x+y≤4表示的平面区域内的事件记为A,求事件A的概率;
(2)若点P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.
解:(1)基本事件总数为6×6=36.
当a=1时,b=1,2,3;
当a=2时,b=1,2;
当a=3时,b=1.
共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个点落在条件区域内,∴P(A)==.
(2)当m=7时,共有(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)6个点满足条件,此时P==最大.
.
高中数学人教版新课标A必修5第二章 数列综合与测试巩固练习: 这是一份高中数学人教版新课标A必修5第二章 数列综合与测试巩固练习,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
必修52.4 等比数列习题: 这是一份必修52.4 等比数列习题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学人教版新课标B选修1-2第四章 框图综合与测试课时训练: 这是一份高中数学人教版新课标B选修1-2第四章 框图综合与测试课时训练,共7页。试卷主要包含了下列说法正确的是,下图中①、②、③、④依次为,下列判断不正确的是,根据流程图可得结果为,5-1=2等内容,欢迎下载使用。