|教案下载
终身会员
搜索
    上传资料 赚现金
    1.2《子集、全集、补集》--子集 教案(苏教版必修1)
    立即下载
    加入资料篮
    1.2《子集、全集、补集》--子集 教案(苏教版必修1)01
    1.2《子集、全集、补集》--子集 教案(苏教版必修1)02
    1.2《子集、全集、补集》--子集 教案(苏教版必修1)03
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    苏教版必修11.2 子集、全集、补集教学设计

    展开
    这是一份苏教版必修11.2 子集、全集、补集教学设计,共7页。

    第三课时 子集、全集、补集(一)
    教学目标:
    使学生理解子集、真子集概念,会判断和证明两个集合包含关系,会判断简单集合的相等关系;通过概念教学,提高学生逻辑思维能力,渗透等价转化思想;渗透问题相对论观点.
    教学重点:
    子集的概念,真子集的概念.
    教学难点:
    元素与子集,属于与包含间的区别;描述法给定集合的运算.
    教学过程:
    Ⅰ.复习回顾
    1.集合的表示方法 列举法、描述法
    2.集合的分类 有限集、无限集
    由集合元素的多少对集合进行分类,由集合元素的有限、无限选取表示集合的方法.故问题解决的关键主要在于寻求集合中的元素,进而判断其多少.
    Ⅱ.讲授新课
    [师]同学们从下面问题的特殊性,去寻找其一般规律.
    幻灯片(A):
    我们共同观察下面几组集合
    (1)A={1,2,3},B={1,2,3,4,5}
    (2)A={x|x>3},B={x|3x-6>0}
    (3)A={正方形},B={四边形}
    (4)A=,B={0}
    (5)A={直角三角形},B={三角形}
    (6)A={a,b},B={a,b,c,d,e}
    [生]通过观察上述集合间具有如下特殊性
    (1)集合A的元素1,2,3同时是集合B的元素.
    (2)集合A中所有大于3的元素,也是集合B的元素.
    (3)集合A中所有正方形都是集合B的元素.
    (4)A中没有元素,而B中含有一个元素0,自然A中“元素”也是B中元素.
    (5)所有直角三角形都是三角形,即A中元素都是B中元素.
    (6)集合A中元素A、B都是集合B中的元素.
    [师]由上述特殊性可得其一般性,即集合A都是集合B的一部分.从而有下述结论.
    幻灯片(B):
    1.子集
    定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A.记作AB(或BA),这时我们也说集合A是集合B的子集.
    [师]请同学们各自举两个例子,互相交换看法,验证所举例子是否符合定义.
    [师]当集合A不包含于集合B,或集合B不包含集合A时,则记作AB(或B A).
    如:A={2,4},B={3,5,7},则AB.
    [师]依规定,空集是任何集合子集.
    请填空:_____A(A为任何集合).
    [生]A
    [师]由A={正三角形},B={等腰三角形},C={三角形},则从中可以看出什么规律?
    [生]由题可知应有AB,BC.
    这是因为正三角形一定是等腰三角形,等腰三角形一定是三角形,那么正三角形也一定是三角形.故AC.
    [师]从上可以看到,包含关系具有“传递性”.
    (1)任何一个集合是它本身的子集
    [师]如A={9,11,13},B={20,30,40},那么有AA,BB.
    师进一步指出:
    如果AB,并且A≠B,则集合A是集合B的真子集.
    这应理解为:若AB,且存在b∈B,但bA,称A是B的真子集.
    A是B的真子集,记作AB(或BA)真子集关系也具有传递性若AB,BC,则AC.
    那么_______是任何非空集合的真子集.
    [生]应填
    2.例题解析
    [例1]写出{a、b}的所有子集,并指出其中哪些是它的真子集.
    分析:寻求子集、真子集主要依据是定义.
    解:依定义:{a,b}的所有子集是、{a}、{b}、{a,b},其中真子集有、{a}、{b}.
    注:如果一个集合的元素有n个,那么这个集合的子集有2n个,真子集有2n-1个.
    [例2]解不等式x-3>2,并把结果用集合表示.
    解:由不等式x-3>2知x>5
    所以原不等式解集是{x|x>5}
    [例3](1)说出0,{0}和的区别;(2){}的含义
    Ⅲ.课堂练习
    1.已知A={x|x<-2或x>3},B={x|4x+m<0},当AB时,求实数m的取值范围.
    分析:该题中集合运用描述法给出,集合的元素是无限的,要准确判断两集合间关系.需用数形结合.

    解:将A及B两集合在数轴上表示出来
    要使AB,则B中的元素必须都是A中元素
    即B中元素必须都位于阴影部分内
    那么由x<-2或x>3及x<-知 -<-2即m>8
    故实数m取值范围是m>8
    2.填空:
    {a} {a},a {a}, {a},{a,b} {a},0 ,{0} ,1 {1,{2}},{2} {1,{2}}, {}
    Ⅳ.课时小结
    1.能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集.
    2.清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.
    Ⅴ.课后作业
    (一)课本P10习题1.2 1,2
    补充:
    1.判断正误
    (1)空集没有子集 ( )
    (2)空集是任何一个集合的真子集 ( )
    (3)任一集合必有两个或两个以上子集 ( )
    (4)若BA,那么凡不属于集合a的元素,则必不属于B ( )
    分析:关于判断题应确实把握好概念的实质.
    解:该题的5个命题,只有(4)是正确的,其余全错.
    对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集.
    对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.
    对于(4)来讲,当x∈B时必有x∈A,则xA时也必有xB.
    2.集合A={x|-1<x<3,x∈Z},写出A的真子集.
    分析:区分子集与真子集的概念.空集是任一非空集合的真子集,一个含有n个元素的子集有2n,真子集有2n-1个.
    则该题先找该集合元素,后找真子集.
    解:因-1<x<3,x∈Z,故x=0,1,2
    即a={x|-1<x<3,x∈Z}={0,1,2}
    真子集:、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个
    3.(1)下列命题正确的是 ( )
    A.无限集的真子集是有限集 B.任何一个集合必定有两个子集
    C.自然数集是整数集的真子集 D.{1}是质数集的真子集
    (2)以下五个式子中,错误的个数为 ( )
    ①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}{1,0,2}
    ④∈{0,1,2} ⑤∈{0}
    A.5 B.2 C.3 D.4
    (3)M={x|3<x<4},a=π,则下列关系正确的是 ( )
    A.aM B.aM C.{a}∈M D.{a}M
    解:(1)该题要在四个选择支中找到符合条件的选择支.必须对概念把握准确,并不是所有有限集都是无限集子集,如{1}不是{x|x=2k,k∈Z}的子集,排除A.由于只有一个子集,即它本身,排除B.由于1不是质数,排除D.故选C.
    (2)该题涉及到的是元素与集合,集合与集合关系.
    ①应是{1}{0,1,2},④应是{0,1,2},⑤应是{0}
    故错误的有①④⑤,选C.
    (3)M={x|3<x<4},a=π
    因3<a<4,故a是M的一个元素.
    {a}是{x|3<x<4}的子集,那么{a}M.选D.
    4.判断如下a与B之间有怎样的包含或相等关系:
    (1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z}
    (2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}
    解:(1)因A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z},故A、B都是由奇数构成的,即A=B.
    (2)因A={x|x=2m,m∈Z},B={x|x=4n,n∈Z},
    又 x=4n=2·2n
    在x=2m中,m可以取奇数,也可以取偶数;而在x=4n中,2n只能是偶数.
    故集合A、B的元素都是偶数.但B中元素是由A中部分元素构成,则有BA.
    评述:此题是集合中较抽象题目.注意其元素的合理寻求.
    5.已知集合P={x|x2+x-6=0},Q={x|ax+1=0}满足QP,求a所取的一切值.
    解:因P={x|x2+x-6=0}={2,-3}
    当a=0时,Q={x|ax+1=0}=,QP成立.
    又当a≠0时,Q={x|ax+1=0}={-},
    要QP成立,则有-=2或-=-3,a=-或a=.
    综上所述,a=0或a=-或a=
    评述:这类题目给的条件中含有字母,一般需分类讨论.
    本题易漏掉a=0,ax+1=0无解,即Q为空集情况.
    而当Q=时,满足QP.
    6.已知集合A={x∈R|x2-3x+4=0},B={x∈R|(x+1)(x2+3x-4=0},要使APB,求满足条件的集合P.
    解:由题A={x∈R|x2-3x+4=0}=
    B={x∈R|(x+1)(x2+3x-4)=0}={-1,1,-4}
    由APB知集合P非空,且其元素全属于B,即有满足条件的集合P为:
    {1}或{-1}或{-4}或{-1,1}或{-1,-4}或{1,-4}或{-1,1,-4}
    评述:要解决该题,必须确定满足条件的集合P的元素.
    而做到这点,必须化简A、B,充分把握子集、真子集的概念,准确化简集合是解决问题的首要条件.
    7.已知AB,AC,B={0,1,2,3,4},C={0,2,4,8},则满足上述条件的集合A共有多少个?
    解:因AB,AC,B={0,1,2,3,4},C={0,2,4,8},由此,满足AB,有,{0},{1},{2},{3},{4},{0,1},{0,2},{2,3},{2,4},{0,3},{0,4},{1,2},{1,3},{1,4},{3,4},{0,2,4},{0,1,2},{0,1,3},{0,1,4},{1,2,3},{1,2,4},{2,3,4},{0,3,4},{0,1,2,3},{1,2,3,4},{0,1,3,4},{0,2,3},{1,3,4},{0,1,2,4},{0,2,3,4},{0,1,2,3,4},共25=32个.
    又满足AC的集合A有
    ,{0},{2}{4},{8},{0,2},{0,4},{0,8}{2,4},{2,8},{4,8},{0,2,4},{0,2,8},{0,4,8},{2,4,8},{0,2,4,8},共24=8×2=16个.
    其中同时满足AB,AC的有8个
    ,{0},{2},{4},{0,2},{0,4},{2,4},{0,2,4},实际上到此就可看出,上述解法太繁.由此得到解题途径.
    有如下思路:
    题目只要A的个数,而未让说明A的具体元素,故可将问题等价转化为B、C的公共元素组成集合的子集数是多少.
    显然公共元素有0、2、4,组成集合的子集有23=8 (个)
    8.设A={0,1},B={x|xA},则A与B应具有何种关系?
    解:因A={0,1},B={x|xA}
    故x为,{0},{1},{0,1},即{0,1}是B中一元素.故A∈B.
    评注:注意该题的特殊性,一集合是另一集合的元素.
    9.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},
    (1)若BA,求实数m的取值范围. (2)当x∈Z时,求A的非空真子集个数.
    (3)当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.
    解:(1)当m+1>2m-1即m<2时,B=满足BA.
    当m+1≤2m-1即m≥2时,要使B≤A成立,
    需,可得2≤m≤3
    综上m≤3时有BA
    (2)当x∈Z时,A={-2,-1,0,1,2,3,4,5}
    所以,A的非空真子集个数为:28-2=254
    (3)∵x∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},又没有元素x使x∈A与x∈B同时成立.
    则①若B=即m+1>2m-1,得m<2时满足条件.
    ②若B=,则要满足条件有:或解之m>4
    综上有m<2或m>4
    评述:此问题解决:(1)不应忽略;(2)找A中的元素;(3)分类讨论思想的运用.
    (二)1.预习内容:课本P9
    2.预习提纲:
    (1)求一个集合补集应具备的条件.
    (2)能正确表示一个集合的补集.


































    子集、全集、补集(一)
    1.判断正误
    (1)空集没有子集 ( )
    (2)空集是任何一个集合的真子集 ( )
    (3)任一集合必有两个或两个以上子集 ( )
    (4)若BA,那么凡不属于集合a的元素,则必不属于B ( )
    2.集合A={x|-1<x<3,x∈Z},写出A的真子集.




    3.(1)下列命题正确的是 ( )
    A.无限集的真子集是有限集 B.任何一个集合必定有两个子集
    C.自然数集是整数集的真子集 D.{1}是质数集的真子集
    (2)以下五个式子中,错误的个数为 ( )
    ①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}{1,0,2}
    ④∈{0,1,2} ⑤∈{0}
    A.5 B.2 C.3 D.4
    (3)M={x|3<x<4},a=π,则下列关系正确的是 ( )
    A.aM B.aM C.{a}∈M D.{a}M
    4.判断如下a与B之间有怎样的包含或相等关系:
    (1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z}
    (2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}



    5.已知集合P={x|x2+x-6=0},Q={x|ax+1=0}满足QP,求a所取的一切值.





    6.已知集合A={x∈R|x2-3x+4=0},B={x∈R|(x+1)(x2+3x-4=0),要使APB,求满足条件的集合P.




    7.已知AB,AC,B={0,1,2,3,4},C={0,2,4,8},则满足上述条件的集合A共有多少个?






    8.设A={0,1},B={x|xA},则A与B应具有何种关系?





    9.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},
    (1)若BA,求实数m的取值范围. (2)当x∈Z时,求A的非空真子集个数.
    (3)当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.



    相关教案

    高中数学苏教版 (2019)必修 第一册第1章 集合1.2 子集、全集、补集教案: 这是一份高中数学苏教版 (2019)必修 第一册第1章 集合1.2 子集、全集、补集教案,共3页。教案主要包含了复习引入,讲授新课,典例讲析,归纳总结,随堂练习等内容,欢迎下载使用。

    高中数学苏教版必修11.2 子集、全集、补集教学设计: 这是一份高中数学苏教版必修11.2 子集、全集、补集教学设计,共3页。教案主要包含了问题情境,学生活动,数学建构,数学运用,回顾小结,作业等内容,欢迎下载使用。

    高中苏教版1.2 子集、全集、补集教学设计: 这是一份高中苏教版1.2 子集、全集、补集教学设计,共7页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map