数学九年级上册第二十一章 一元二次方程21.2 解一元二次方程21.2.2 公式法教案
展开
这是一份数学九年级上册第二十一章 一元二次方程21.2 解一元二次方程21.2.2 公式法教案,共3页。教案主要包含了教学目标,教学重难点,教学过程,作业布置与教学反思等内容,欢迎下载使用。
21.2.2 公式法一、教学目标1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.能熟练运用公式法解一元二次方程.二、教学重难点重点一元二次方程求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.重难点解读1.根的判别式Δ=b2-4ac中的a,b,c分别为一般式中的二次项系数、一次项系数及常数项,因此确定a,b,c之前应把方程化为一般形式.2.计算出Δ后应与0比较,从而判断方程根的情况.3.根的判别式只适用于一元二次方程,不能盲目使用.4.根的判别式的应用要注意隐含条件a≠0.5.求根公式是用配方法解一元二次方程的结果,用它直接解方程避免了繁杂的配方过程,公式法是一种常用解法,并且适用于所有的一元二次方程.三、教学过程活动1 旧知回顾1.前面我们学习过解一元二次方程的“直接开平方法”,比如方程(1)x2=4;(2)(x-2)2=7.提出问题:(1)这种解法的(理论)依据是什么?(2)这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊一元二次方程有效,不能用于一般形式的一元二次方程.)(3)面对这种局限性,怎么办?(使用配方法,把一般形式的一元二次方程配方成能够“直接开平方”的形式.)2.用配方法解方程:6x2-7x+1=0.活动2 探究新知1.教材第9页 探究.提出问题:(1)我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax2+bx+c=0(a≠0)的形式.我们是否也能用配方法求出ax2+bx+c=0(a≠0)的解呢?想想看,该怎样做?请同学们认真思考,然后师生共同探讨方程ax2+bx+c=0(a≠0)的解.(2)用配方法解一元二次方程的步骤是什么?移项后得到的方程是什么?把二次项系数化为1的方程是什么?怎么把方程左边配成x2+2bx+b2的形式?方程x2+x+()2=-+()2的左边写成完全平方的形式是什么?(3)(x+)2=两边能直接开平方吗?为什么?你认为下一步该怎么办?谈谈你的看法.活动3 知识归纳1.一般地,式子 b2-4ac 叫做一元二次方程ax2+bx+c=0根的判别式,通常用希腊字母“Δ”表示,即Δ=b2-4ac.从而有:①当Δ > 0时,方程ax2+bx+c=0(a≠0)有两个不相等的实数根;当Δ = 0时,方程ax2+bx+c=0(a≠0)有两个相等的实数根;当Δ < 0时,方程ax2+bx+c=0(a≠0)无实数根;②当Δ≥0时,方程ax2+bx+c=0(a≠0)的实数根可写为x= 的形式,这个式子叫做一元二次方程ax2+bx+c=0的求根公式.2.解一个具体的一元二次方程时,把各系数直接代入 求根公式 ,可以直接得出根,这种解一元二次方程的方法叫做公式法.活动4 典例赏析及练习例1 不解方程,判定下列方程根的情况:(1)16x2+8x=-3;(2)x2-7x-18=0.找出方程中二次项系数、一次项系数和常数项,利用b2-4ac与0的大小关系可得出结论.注意:在确定方程a,b,c的值时,一定要先把方程化为一般式后才能确定,否则会出现错误.【答案】(1)方程没有实数根;(2)方程有两个不相等的实数根.例2 教材第11页 例2.例3 若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).【答案】解:一元二次方程没有实数根,则Δ<0且a-2≠0.解得a的取值范围是a<-2.∴ax+3>0的解为x<.练习:1.关于x的方程x2-2x+m=0有两个实数根,则m的取值范围是 m≤1 .2.关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值为 -3 .3.解下列方程:(1)3x2-6x-2=0;(2)3x2-x+2=1+x;(3)2x2-4x+2=0.【答案】(1)x1=,x2=;(2)方程无实数根;(3)x1=x2=1.活动5 课堂小结1.求根公式的概念及其推导过程.2.公式法的概念.3.运用公式法解一元二次方程的步骤:(1)将所给的方程化为一般形式,注意移项要变号,尽量让a>0;(2)找出系数a,b,c,注意各项的系数及符号;(3)计算b2-4ac,若结果为负数,方程无解;(4)若结果为非负数,代入求根公式算出结果.四、作业布置与教学反思
相关教案
这是一份初中数学人教版九年级上册21.2.2 公式法获奖教学设计,共9页。教案主要包含了教学重难点,教学用具,教学过程设计等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册21.2.2 公式法优秀教案设计,共9页。教案主要包含了教学重难点,教学用具,教学过程设计等内容,欢迎下载使用。
这是一份人教版21.2.2 公式法教案设计,共4页。教案主要包含了复习引入,探索新知,巩固练习,应用拓展,归纳小结,布置作业等内容,欢迎下载使用。