终身会员
搜索
    上传资料 赚现金

    第十一章立体几何初步章末总结课件数学人教B版(2019)必修第四册

    立即下载
    加入资料篮
    第十一章立体几何初步章末总结课件数学人教B版(2019)必修第四册第1页
    第十一章立体几何初步章末总结课件数学人教B版(2019)必修第四册第2页
    第十一章立体几何初步章末总结课件数学人教B版(2019)必修第四册第3页
    第十一章立体几何初步章末总结课件数学人教B版(2019)必修第四册第4页
    第十一章立体几何初步章末总结课件数学人教B版(2019)必修第四册第5页
    第十一章立体几何初步章末总结课件数学人教B版(2019)必修第四册第6页
    第十一章立体几何初步章末总结课件数学人教B版(2019)必修第四册第7页
    第十一章立体几何初步章末总结课件数学人教B版(2019)必修第四册第8页
    还剩13页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中人教B版 (2019)第十一章 立体几何初步本章综合与测试课文ppt课件

    展开

    这是一份高中人教B版 (2019)第十一章 立体几何初步本章综合与测试课文ppt课件,共21页。


    专题一 共点、共线、共面问题 例1如图所示,在空间四边形ABCD中,E,F分别为AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2,求证:
    (1)E,F,G,H四点共面;(2)EG与HF的交点在直线AC上.
    证明:(1)因为BG∶GC=DH∶HC,所以GH∥BD.又因为E,F分别为AB,AD的中点,所以EF∥BD.所以EF∥GH.所以E,F,G,H四点共面.(2)因为G,H不是BC,CD的中点,所以EF∥GH,且EF≠GH.所以EG与FH必相交,设交点为M.而EG⊂平面ABC,HF⊂平面ACD,所以点M∈平面ABC,且点M∈平面ACD.因为平面ABC∩平面ACD=AC,所以点M∈AC,即EG与HF的交点在直线AC上.
    专题二 空间中的平行关系 例2如图所示,四边形ABCD是平行四边形,PB⊥平面ABCD,MA∥PB,PB=2MA.在线段PB上是否存在一点F,使平面AFC∥平面PMD?若存在,请确定点F的位置;若不存在,请说明理由.
    解:当点F是PB的中点时,平面AFC∥平面PMD.证明如下:如图连接BD和AC交于点O,连接FO,则PF= PB.
    ∵四边形ABCD是平行四边形,∴O是BD的中点.∴OF∥PD.又OF⊄平面PMD,PD⊂平面PMD,∴OF∥平面PMD.
    ∴四边形AFPM是平行四边形.∴AF∥PM.又AF⊄平面PMD,PM⊂平面PMD.∴AF∥平面PMD.又AF∩OF=F,AF⊂平面AFC,OF⊂平面AFC.∴平面AFC∥平面PMD.
    专题三 空间中的垂直关系 例3如图,斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,点B1在底面ABC上的射影恰好是BC的中点,且BC=CA=AA1.(1)求证:平面ACC1A1⊥平面B1C1CB;(2)求证:BC1⊥AB1.
    证明:(1)设BC的中点为M,连接B1M.∵点B1在底面ABC上的射影恰好是点M,∴B1M⊥平面ABC.∵AC⊂平面ABC,∴B1M⊥AC.又∵BC⊥AC,B1M∩BC=M,∴AC⊥平面B1C1CB.又∵AC⊂平面ACC1A1,∴平面ACC1A1⊥平面B1C1CB.
    (2)连接B1C.∵AC⊥平面B1C1CB,∴AC⊥BC1.在斜三棱柱ABC-A1B1C1中,∵BC=CC1.∴四边形B1C1CB是菱形,∴B1C⊥BC1.又∵B1C∩AC=C,∴BC1⊥平面ACB1,∴BC1⊥AB1.
    专题四 空间角的计算 例4如图,在Rt△AOB中,∠OAB=30°,斜边AB=4,Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B-AO-C是直二面角,动点D在斜边AB上.(1)求证:平面COD⊥平面AOB;(2)当D为AB的中点时,求异面直线AO与CD所成角的正切值;(3)求CD与平面AOB所成角的正切值的最大值.
    (1)证明:由题意,CO⊥AO,BO⊥AO,∴∠BOC是二面角B-AO-C的平面角,又∵二面角B-AO-C是直二面角.∴CO⊥BO.又∵AO∩BO=O,∴CO⊥平面AOB.又CO⊂平面COD,∴平面COD⊥平面AOB.
    (2)解:作DE⊥OB,垂足为点E,连接CE(如图),则DE∥AO.∴∠CDE是异面直线AO与CD所成的角.
    (3)解:由(1)知,CO⊥平面AOB,∴∠CDO是CD与平面AOB所成的角,
    例5在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的四面体称为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.
    (1)证明:PB⊥平面DEF.试判断四面体DBEF是不是鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由.
    解:(1)因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE⊂平面PCD,所以BC⊥DE.又因为PD=CD,点E是PC的中点,所以DE⊥PC.而PC∩BC=C,所以DE⊥平面PBC.而PB⊂平面PBC,所以PB⊥DE.又PB⊥EF,DE∩EF=E,所以PB⊥平面DEF.又DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.
    (2)如图,在平面PBC内,延长BC与FE交于点G,则DG是平面DEF与平面ABCD的交线.由(1)知,PB⊥平面DEF,所以PB⊥DG.又因为PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD.故∠BDF是平面DEF与平面ABCD所成二面角的平面角,设
    专题五 逻辑推理的核心素养 例6如图所示,AB为☉O的直径,C为☉O上一点,AD⊥平面ABC,AE⊥BD于点E,AF⊥CD于点F.求证:BD⊥平面AEF.
    证明:∵AB为☉O直径,C为☉O上一点,∴BC⊥AC,
    ⇒BD⊥平面AEF.
    专题六 函数与方程思想 例7如图所示,正方形ABCD,ABEF的边长都是1,而且平面ABCD与平面ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0解:(1)如图所示,作MP∥AB交BC于点P,NQ∥AB交BE于点Q,连接PQ,依题意可得四边形MNQP是平行四边形,∴MN=PQ.

    相关课件

    高中数学人教版新课标B必修2第一章 立体几何初步综合与测试教学课件ppt:

    这是一份高中数学人教版新课标B必修2第一章 立体几何初步综合与测试教学课件ppt,共36页。PPT课件主要包含了章末总结归纳等内容,欢迎下载使用。

    数学人教B版 (2019)第十一章 立体几何初步本章综合与测试获奖复习作业课件ppt:

    这是一份数学人教B版 (2019)第十一章 立体几何初步本章综合与测试获奖复习作业课件ppt,文件包含第11章章末复习课ppt、专题强化训练3doc、章末综合测评3立体几何初步doc、第11章章末复习课doc等4份课件配套教学资源,其中PPT共43页, 欢迎下载使用。

    2020-2021学年第十章 复数本章综合与测试评课课件ppt:

    这是一份2020-2021学年第十章 复数本章综合与测试评课课件ppt,共16页。PPT课件主要包含了答案31,答案B等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第十一章立体几何初步章末总结课件数学人教B版(2019)必修第四册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map